



# Physics design of Superconducting RF Cavities for Indian Spallation Neutron Source

## Vinit Kumar

# (on behalf of Accelerator Physics design team) RRCAT, Indore

July 18, 2017

**DAE-BRNS Workshop on Technology Development of Superconducting RF Cavities** 

### **Outline of the talk**

• Multi-cell cavity basics

• Optimization of cavity geometry

• Higher order modes

• Lorentz force detuning

• Multipacting

• Lattice and beam dynamics for 1 GeV ISNS linac

# The pi mode (SSR)



### The pi mode (elliptic cavity)



### The pi mode as seen by the particle - I

 $\Delta \boldsymbol{U} = \boldsymbol{q} \times \boldsymbol{E}_0 \, \boldsymbol{T} \times \boldsymbol{L} \times \boldsymbol{Cos} \, \boldsymbol{\phi}_s$ 



### The pi mode as seen by the particle - II



### The pi mode as seen by the particle - III



### TTF plot: signature of the cavity



### **Quality factor**



### **Optimization of cavity material parameters**\*



\*"Influence of material parameters on the performance of niobium based superconductig RF cavities' (https://arxiv.org/abs/1703.07985)

### **Cavity RF parameters**

- Energy gain:  $\Delta U = q \times E_0 T \times L \times \cos \phi_s = qV \cos \phi_s$
- Shunt impedance:  $R = \frac{V^2}{P_C}$  (depends on cavity material and TTF)
- R by Q:  $\frac{R}{Q} = \frac{V^2}{\omega U}$  (depends on cavity geometry and TTF)
- Gain in beam power:  $P_b = I V \cos \phi_s$

• Coupling coefficient for critical coupling:  $\beta = 1 + \frac{P_b}{P_c}$ 

• Loaded Q:  $Q_L = \frac{Q_0}{1+\beta}$ 

• Cavity half bandwidth: 
$$\Delta f = \frac{f}{2Q_L}$$

• Cavity fill time: 
$$\tau_f = \frac{1}{2\pi\Delta f}$$

### Schematic of the accelerator for the proposed ISNS



1 GeV, 10 mA pulsed injector linac and accumulator ring

### **Details of the pulse structure**



 $2 \text{ ms} \rightarrow 2000 \text{ turns injection into accumulator ring.}$ 

### Wish list in SCRF cavity design

- Maximize achievable acceleration gradient
- **Obtain good field flatness** (with achievable geometrical tolerances)
- Ease of cavity processing
- Free from multipacting
- HOM effects within acceptable limits (heat generation and deterioration in beam quality)
- No beam instability issue (Threshold current higher than operating beam current)
- LFD within control

### EM Design of $\beta_g = 0.61^*$ and $\beta_g = 0.9^+$ , 5-cell, 650 MHz SCRF cavity\*

Geometrical parameters optimized to minimize  $B_{pk}/E_a$  and  $E_{pk}/E_a$ , and ensure that there are no trapped HOMs and no multipacting.



### $\beta_{o} = 0.61$ cavity $\beta_{o} = 0.9$ cavity **Parameter** Mid-**End-cell End-cell** Mid-**End-cell** cell (exit) cell (entry) $R_{iris}$ (mm) 44.00 44.00 44.00 50.00 50.00 195.591 195.591 195.591 199.93 199.93 $R_{ea}$ (mm) $L (\mathbf{mm})$ 70.336 71.55 71.24 103.77 105.80 52.64 52.64 52.25 83.26 83.26 $A (\mathbf{mm})$ 55.55 55.55 55.55 84.00 84.00 **B** (mm) 15.28 15.28 15.28 16.79 16.79 *a* (mm) 29.45 **b** (mm) 28.83 28.83 28.83 29.45

### **Geometrical parameters**

### **RF parameters**

| Parameter                              | $\beta_g = 0.61$ | $\beta_g = 0.9$ |
|----------------------------------------|------------------|-----------------|
| E <sub>acc</sub> (MV/m)                | 15.4             | 18.6            |
| $E_{pk}/E_{acc}$                       | 2.36             | 2.0             |
| $\frac{B_{pk}/E_{acc}}{[(mT/(MV/m)]]}$ | 4.56             | 3.78            |
| k <sub>c</sub>                         | 0.8%             | 0.75%           |
| $G(\Omega)$                            | 189              | 257             |
| $R/Q(\Omega)$                          | 328              | 609             |
| Cryogenic load                         | 16 W             | 20 W            |

### \*IEEE Transactions of applied superconductivity, 23, 3500816 (2013) : +24, 3500216 (2014)

### **Electromagnetic Design of 325 MHz SSRs\***

Geometrical optimization done to (i) minimize Ep/Eacc and Bp/Eacc, and (ii) maximize R/Q. HOM studies are done using CST-MWS. Multipacting studies done using CST-PS



### RF parameters for $\beta_g = 0.9$ cavity

•  $\Delta U = q \times E_0 T \times L \times \cos \phi_s = 18.6 \times 1.04 = 19.3 \text{ MeV}$ 

•  $\frac{R}{Q} = 609 \Omega$ 

•  $P_b = I V \cos \phi_s = 10 \text{ mA} \times 19.3 \text{ MeV} = 193 \text{ kW}$ 

• 
$$Q_0 = 3 \times 10^{10}$$
 •  $P_c = \frac{V^2}{(R/Q) \times Q} = \frac{(19.3 \times 10^6)^2}{609 \times 3 \times 10^{10}}$  W = 20.4 W

• 
$$\beta = 1 + \frac{P_b}{P_c} = 1 + \frac{193 \times 10^3}{20.4} = 9462$$

• 
$$Q_L = \frac{Q_0}{1+\beta} = \frac{3 \times 10^{10}}{9463} = 3.2 \times 10^6$$

• 
$$\Delta f = \frac{f}{2Q_L} = \frac{650 \times 10^6}{2 \times 3.2 \times 10^6} = 102 \text{ Hz}$$

Pulsed RF power = 193 kW × 1.25 = 250 kW RF pulse width = 4-5 ms

Cryogenic duty factor = 16 - 22% Dynamic Cryogenic load per cavity = 3.3 – 4.5 W

•  $\tau_f = \frac{1}{2\pi\Delta f} = 1.6 \text{ ms}$ 

# **Summary of typical cavity parameters**

| Parameters                      | $SSR0 \\ (\beta_g=0.11)$ | $SSR1$ ( $\beta_g=0.22$ ) | $SSR2 \\ (\beta_g=0.42)$ | LB<br>(β <sub>g</sub> =0.61) | HB<br>(β <sub>g</sub> =0.9) |
|---------------------------------|--------------------------|---------------------------|--------------------------|------------------------------|-----------------------------|
| Energy gain per cavity<br>(MeV) | 0.62                     | 1.65                      | 3.1                      | 10.9                         | 19.3                        |
| Peak RF power<br>(kW)           | 8                        | 21                        | 39                       | 140                          | 250                         |
| RF pulse width (ms)             | 2-3                      | 2-3                       | 2-3                      | 4-5                          | 4-5                         |
| Cryogenic load<br>(W)           | 1                        | 2                         | 4.5                      | 16                           | 20.4                        |
| Cryogenic duty factor<br>(%)    | 12                       | 13                        | 15                       | 16-22                        | 16-22                       |

### **Higher Order Modes**

- Monopole TM modes are excited by the beam. Beyond a threshold beam current, dipole TM modes build up.
- Detrimental effects of HOM → Heat generation leading to cryogenic load ,Beam instability, which limits the maximum current that can be accelerated.
- Trapped monopole mode observed at 1653.2 MHz in  $\beta_g = 0.61$  design. We tune  $L_e$  and A to achieve matching for fundamental as well as HOM.  $\rightarrow L_e = 71.24$  mm, A = 52.25 mm.



### Higher Order Modes (Non-resonant with beam)

### For non-resonant excitation of HOMs ( $\beta_g = 0.61$ )

 $P = \text{micropulse rep rate} \times k_{//} \times (\text{micropulse charge})^2 \times \text{Duty factor}$ = 325 MHz × 0.53 V/pC × (46 pC)<sup>2</sup> × 10% = 36 mW



### Monopole HOMs affect the beam emittance also

### Higher Order Modes (resonant with beam)

• Heat load calculation due to HOMs resonantly excited by the beam time structure concluded that  $Q_{ext} \leq 10^7$  is required.



### **Regenerative Beam Break Up due to HOMs**

### Dipole TM modes can be excited by off-axis beam

 $\rightarrow$ Off-axis particles excite dipole modes  $\rightarrow$  dipole mode gives transverse kick to beam  $\rightarrow$ 

Regenerative beam break up instability (if growth rate > decay due to heat dissipation)

$$I_{th} = \frac{\pi^3 (cp_z / e)k_n}{2g(\alpha) \times (R_\perp / L_{cav}) \times L_{cav}^2}$$

Standing wave case *No HOM coupler* 

$$I_{th} = \frac{\pi^3 v_g (cp_z / e)Q}{2c \times g(\alpha) \times (R_\perp / L_{cav}) \times L_{cav}^3}$$

Traveling wave case *with HOM coupler* 

### **Regenerative Beam Break Up due to HOMs**

Calculation of threshold current for regenerative Beam Break Up (BBU) for  $\beta_{\rm g}=0.61$  case



**Dispersion curve for TM dipole modes** 

Minimum  $I_{th} = 0.7 \text{ mA}$ 



 $\Delta f = \frac{f}{Q_L} = \frac{650 \times 10^6}{3.2 \times 10^6} = 200 \text{ Hz}$ 

Cavity deforms and detunes Need to compensate for that Need to avoid resonant build up of oscillations! Reduce LFD by stiffening the cavity and compensate for LFD using a tuner











### **Participating structure modes:**

| r <sub>stiffener</sub> (mm) | $f_I(\text{Hz})$ | $f_2(\text{Hz})$ | $f_3(\text{Hz})$ | $f_4(\text{Hz})$ | $f_5(\text{Hz})$ |
|-----------------------------|------------------|------------------|------------------|------------------|------------------|
| 124.00                      | 265.07           | 426.48           | 576.19           | 713.59           | 749.42           |
| 120.00                      | 244.87           | 414.74           | 564.03           | 696.97           | 759.72           |
| 116.00                      | 226.00           | 397.09           | 550.89           | 681.37           | 760.72           |
| 112.00                      | 208.76           | 375.45           | 538.55           | 662.98           | 750.70           |
| 108.00                      | 193.18           | 352.27           | 526.39           | 641.40           | 732.29           |

• 
$$r_{stiffener} \uparrow \leftrightarrow f_1 \uparrow \odot$$
  
•  $r_{stiffener} \uparrow \leftrightarrow$  He vessel elongation  $\uparrow \odot$ 

Nucl. Instrum. and Meth. Phys. Res. A 750 69 (2014).

### **Multipacting**



### Multipacting



### Multipacting suppression in $\beta_g = 0.61$ cavity



Nucl. Instrum. and Meth. Phys. Res. A 867 128 (2017).

### **Multipacting studies in SSRs\***



(a) Before Refinements



- Smoothening of all corners
- ➢ Iris shape modified from cylindrical to conical.



(b) After Refinements



# **Optimized lattice configuration of 1 GeV injector linac**



(1) 20 cm +17.5 cm + 13.77 cm + 15 cm = 66.27 cm



SSR1 
$$\rightarrow$$
 × 20 periods = 16.5 m

(2) 26 cm + 17.5 cm + 24 cm + 15 cm = 82.5 cm



SSR2  $\rightarrow$  × 16 periods  $\rightarrow$  20.13 m

(3) 32 cm + 17.4 cm + 40.08 cm + 25 cm + 40.08 cm + 15 cm = 169.56 cm

(4) (35+20+35) cm + 55.33 cm + 2 x (80.34+42.25) cm + 80.34 cm + 30.33 cm = 501.18 cm

| n  | Section | Energy(MeV) | Cav/mag | Focusing     |
|----|---------|-------------|---------|--------------|
| 11 | SSR0    | 3-10        | 14 /14  | solenoid     |
|    | SSR1    | 10- 43      | 20 /20  | solenoid     |
| n  | SSR2    | 43-160      | 32 /16  | solenoid     |
|    | MB 650  | 160-527     | 48 /16  | quad doublet |
|    | HB 650  | 527-1075    | 40 / 5  | quad doublet |

### **Details of lattice (cavity + focusing elements)**



### End to end beam dynamics of 1 GeV Injector Linac



### End to end beam dynamics of 1 GeV Injector Linac



### **RF power requirements per cavity**



Position (m)

# Cavity Power (kW)



• We discussed the issues related to calculation of TTF and  $Q_0$  in SCRF cavities.

• Basis for the physics design of SCRF cavity for ISNS was presented and the we discussed the status of physics design studies.

• A few sets of physics design have evolved. Further refinement in the design is in progress.

