Kolkata Superconducting Cyclotron

THEFT FF

R.K. Bhandari

Variable Energy Cyclotron Centre Kolkata, INDIA

Joint Accelerator School(JAS'08), RRCAT, Indore, January 14, 2008

Cyclotron ($E/A=q^2B^2R^2/2m^2$)

224cm Variable Energy Cyclotron

Expected Ion Beams from K 500 SC (based on 10 μA extracted from ion source)

Maximum energy per nucleon available

Lower part of the magnet frame

1 an La

CANCEL-4

MAGAR

OHILL

10

SUPERCONDUCTING COIL AND CRYOSTAT

Cryogenic Test Laboratory

Superconducting coil winding facility

Pressure arm assembly of the winding machine

Bobbin with helium lines

Cryostat bobbin with vapour-cooled current leads and refrigeration port.

Insulated Bolobin assembly

Insulated bobbin & radiation shield being inserted into vacuum chamber

CRYOGENIC PLANT & CRYOGEN DELIVERY SYSTEM

Liquid Helium Plant

LIQUIFACTION MODE 50 LPH without LN2 pre-cooling 100 LPH with LN2 pre-cooling REFRIGERATION MODE

160 W without LN2 pre-cooling 200 W with LN2 pre-cooling

Schematic PID of cryogenic system for helium

HMI window for the helium plant

Inside the Liquid Helium Plant

Cold Box Without MLI

Measured refrigeration load of helium liquifier at 4.5K without LN2 pre-cooling

Transfer lines connected to the SC magnet

Cryogenic transfer lines connected to superconducting cyclotron magnet

MMI showing flow diagram for the SC magnet

Reduction of moisture level in the cryostat

Cool-down of superconducting cyclotron magnet

Heat load of cryostat

Horizontal link force during cool down

ENERGISATION OF THE SUPERCONDUCTING MAGNET

Main Magnet Power Supplies

GENERAL FEATURES

- •1000 A / 20 V, 10 ppm (current regulated)
- Series pass element transistor bank
- 12-pulse thyristor-based controlled rectifier
- SCR pre-regulator
- RF shielding and filters
- Safety interlocks
- 18-bit D/A Converter
- I6-bit A/D Converter
- Computer interface (RS-232 / 422)

SPECIAL FEATURES

 Slow dump resistors and fast dump resistors are provided for dissipating the energy stored in the coils outside the cryostat
Operator's Console for Main Magnet Power Supplies

FACILITIES

- Remote operation (ON/OFF, HALT, STOP)
- Current setting
- Status and parameter monitoring
- Online data logging with time stamp

Slow Dump

The states of the four contacts when slow dump is in progress

Fast Dump

The states of the two contacts when fast dump is in progress

Profile of current decay for fast dump initiated at 400 A

Horizontal support link forces

E9 Support Link was tightened to +145 degrees

Max. Current: 750 A

CRYOPANELS & THEIR CRYOGEN DELIVERY SYSTEM

Cryopanel for the superconducting cyclotron

MMI showing flow diagram for cryogen delivery to the cryopanels

Transfer lines and bayonet for cryopanels

Cold head for the cryopanel

Basement mezzanine manifold for supplying liquid nitrogen to the magnet cryostat

347 mm

Basement manifold with liquid helium pump (computer model)

Inside the basement manifold

Basement manifold ready for the final assembly

Basement manifold for circulation of LHe and LN2 to cryopanels

Chevron baffle and thermal shield for cryopanel

Simulation of cryogenic system for safety studies

Effect of spillage of liquid nitrogen in SC building

Effect of spillage of liquid helium in SC building

MAGNETIC FIELD MEASUREMENTS AND ANALYSIS

Field Mapping Jig

1st Harmonic minimization

First Harmonic Minimization By Adding Iron Shims

Shiming To Correct Average Field Profile

Simulation of 3D Field Distribution with TOSCA

Field measurement was not possible at all excitations and at all places due to inaccessibility. TOSCA simulation has been done to make up the data.

Axial hole field mapping

RF SYSTEM & RF POWER SUPPLIES

RF SYSTEM SPECIFICATION

- Frequency range:
- Harmonic Modes:
- 100 kV Peak Dee Voltage:
- Frequency Stability:
- Amplitude Stability:
- Phase Stability:

9 to 27 MHz

1,2,3,4,5,7

1 x 10⁻⁷

1 x 10⁻⁴

±0.5°

FINAL RF AMPLIFIER

- Eimac 4CW 150000E Tetrode based power amplifier
- Output Power: 100 kW max. at 50
 Ohm
- Power gain ~ 22 dB
- Input Power: 600 W at 50 Ohm
- Mode of operation: Class AB
- $\lambda/4$ Resonant cavity similar to main Dee-cavity
- Tunable from 9 MHz to 27 MHz by movable Sliding short
- Sliding short travel ~ 2184 mm.
 max.
- Precise movement of sliding short by PC-based stepper motor controlled system

INPUT CIRCUIT FOR RF AMPLIFIER

RF Power Supplies Fabricated at VECC

250 KVA Transformer

Assembly Anode Power Supply

(0 to 20KV DC, 22.5A, 7% load regulation, fast crowbar protection)

Control Grid Power Supply (-400 to -500 V DC, 100 mA, 0.01% load regulation)

Filament Power Supply

(0 to 15.5 V \pm 0.75 V DC, 215A at 15.5 V)

Screen Grid Power Supply (500 to 1600 V DC, 0.5A, 0.006% load regulation)

RF SYSTEM (Mechanical)

DEE

Lower RF Liner

Lower RF Liner with Dees and Centre region Components

Upper RF Liner with Dees and Centre region components

Installation of inner conductors below the magnet

OUTER CONDUCTOR SPINNING

Lower outer conductor spinning assemblies

View from bottom of Magnet showing Trim Coil leads.

View from bottom of Lower RF Cavity

Three inner conductor assemblies on lower support structure

Lower RF Cavity in position

Upper pole cap in elevated condition Showing Cryostat & Upper RF cavity

K-500 Cyclotron Magnet and RF System

INJECTION, EXTRACTION & BEAM DIAGNOSTICS

14 GHz ECR ION SOURCE

SPIRAL INFLECTOR

Fabrication work at CDM, BARC

Achieved 50 kV with 6mm gap

Current....45 enA

DEFLECTOR TEST STAND

Passive magnetic channels

Electrostatic Deflector

Magnetic channel drives & control hardware

Magnetic channel (M9) Slit drive & coil

LOCK SLIT

HMI for M9 Slit Control

Beam Diagnostic Probe

Beam Viewer Probe

TRIM COIL WATER TEMPERATURE CONTROL SYSTEM

Redundant standalone controller architecture along with redundant temperature sensors

Maintain temperature difference within ±0.5°C between pole tips and magnet yoke

Minimise relative thermal expansion or contraction of pole tips with respect to magnet yoke of Superconducting Cyclotron

Control conductivity by feed-bleed mechanism with main LCW system

TRIM COIL WATER TEMPERATURE CONTROL SYSTEM

UTILIZATION OF THE SUPERCONDUCTING CYCLOTRON

Operating Diagram & Initial Ions Expected

(November 2007)

Frequency (MHz)

K500 SUPERCONDUCTING CYCLOTRON EXTERNAL BEAMLINE LAYOUT

Major Facilities

Nuclear Physics

- Scattering Chamber
- Charged Particle

Detector Array

- Neutron Detector Array
- High Energy Gamma Ray Array
- Ion Trap

Condensed Matter

- X-ray Diffractometer
- Acoustic emission setup
- Vibrating sample magnetometer

Nuclear Chemistry

- Activation analysis
- Pneumatic carrier facility
- Multitracer studies

Nuclear Physics with superconducting cyclotron

Facilities

Exotic Nuclear structures

Evolution of neutron star, supernovae

 4π neutron multiplicity detector

Charged particle detector array

Forward Array Si-Si-Csl(Tl)

Prototype Si-Si-CsI(TI) array

High energy gamma ray detector array

Deformed configuration of 32S* Studied by GDR splitting

Gamma array at Exptl hall

Neutron Multiplicity detector

Prototype neutron detector

