INJECTION AND EXTRACTION SYSTEM OF

SUPERCONDUCTING CYCLOTRON

C. MALLIK

VECC

KOLKATA

$E(Energy)=B^2 R^2 Q^2/2M$

Superconducting cyclotron (1985)

- Most existing cyclotrons utilize room temperature magnets Bmax =2T (iron saturation)
- Beyond that, superconducting coils must be used: B_{hill} ~ 6 T
 - 1. Small magnets for high energy
 - 2. Low operation cost

VECC

224 cm 2.1Tesla

450 KW

K130

SCC

SCC 142 cm 5.8 Tesla 40KW K500

RF System Specification

Frequency range	9 – 27 MHz
Harmonics	1,2,3,4,5,7
Dee Voltage	100 kV max.
Frequency stability	1 x 10-7
Amplitude stability	1 x 10 ⁻⁴
Phase stability	< 0.5 ⁰

224cm Variable Energy Cyclotron

ECR-1 AT VECC

Schematic of central region modifications

Axial injection

- 1. The electrostatic mirror
 - Simpliest: A pair of planar electrodes which are at an angle of 45° to the incoming beam. The first electrode is a grid reducing transmission (65% efficiency).
 - smallest
 - High voltage

ECR ION SOURCE

Argon Beam Spectrum

ECR Ion Source

Fabrication Completed, Ready for Assembly

14 GHz ECR ION SOURCE

BEAM ENVELOPE FOR AXIAL INJECTION LINE

Spiral inflector

- First used in Grenoble (J.L. Pabot J.L. Belmont)
- Consists of 2 cylindrical capacitors which have been twisted to take into account the spiralling of the ion trajectory from magnet field.

* $\vec{v}_{beam} \perp \vec{E}$: central trajectory lies on an equipotential surface. Allows lower voltage than with mirrors.

- 2 free parameters (spiral size in z and xy) giving flexibility for central region design
- 100 % transmission

SPIRAL INFLECTOR

Fabrication work at CDM, BARC

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & K'/2 & K & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ -K'/2 & -K & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} , \quad (\text{varying axial field})$$

$$\begin{pmatrix} 0 & 1 & -CK & 0 & 0 & 0 \\ -S^2K^2 & 0 & -SK/A & 0 & 0 & SK \\ CK & 0 & 0 & 1 & 0 & 0 \\ -SK/A & 0 & 0 & 0 & 0 & 2/A \\ -SK & 0 & -1/A & 0 & 0 & 1 \\ -CK/A & 0 & 0 & -1/A & 0 & 0 \end{pmatrix} , \quad (\text{spiral inflector})$$

where $K = 1/\rho$, A is the inflector height, $S = \sin (s/A)$, $C = \cos (s/A)$, s is the independent variable and is set to zero at the inflector entrance. For the spiral inflector, the two transfer matrices

Figure 2: The spiral inflector.

Lower RF liner, Dee and Center region connectors

Electric potential distribution for central region electrode structures as simulated with the code RELAX3D. (a) The equipotential contours for dee-1 kept at V_{dee} and other electrodes grounded. (b) and (c) shows the similar picture for dee-2 and dee-3 kept at V_{dee} respectively while others grounded. (d) shows the distribution when all the dees are at V_{dee} ; the dees, dummy dees and posts are also shown.

RELAX3D, ANSYS

CENTRAL PLUG Plug hill part Added shim

Central Region Electrode Structure and Reference Trajectory

Q/A=0.37 37 MeV/n

Relativistic case

Isochronism and Lorentz factor

$$m = \gamma m_0 = \frac{m_0}{1 - \beta^2} , \quad \beta = \frac{v}{c}$$

$$\omega_{rev} = \frac{QB(r)}{\gamma(r)m_0}$$

 ω_{rev} constant if $B(r) - \gamma(r)B_0$ / increasing field (n < 0)

Not compatible with a decreasing field for vertical focusing

Tunes

$$u_r^2 = 1 + \kappa, \text{ and } \nu_z^2 = -\kappa + F^2(1 + 2\tan^2 \xi)$$

These expressions were originally derived by Symon, Kerst, Jones, Laslett, Terwilliger in the original 1956 Phys. Rev. paper about FFAGs.

Note: Since there is now a distinction between local curvature (ρ) and global (R), the definition of field index is ambiguous. The local index, used in the dipole transfer matrix, is $k = \frac{\rho}{B} \frac{dB}{d\rho}$, while the Symon formula uses $\kappa = \frac{R}{B} \frac{dB}{dR} \approx k \frac{R}{\rho}$. It is in fact this latter quantity which must be equal to $\beta^2 \gamma^2$ for isochronism.

For isochronous machines, we therefore have

$$\nu_r = \gamma$$
, and $\nu_z^2 = -\beta^2 \gamma^2 + F^2 \left(1 + 2 \tan^2 \xi \right)$

Energy and focusing limits

For conventional cyclotron, F increases for small hill gap (B_{hill}
¬) and deep valley (B_{val} →) but <u>does not depend</u> on the magnetic field level;

$$F = \frac{\left(B_{hall} - B_{val}\right)^2}{8\left(B\right)^2}$$

 For superconducting cyclotron, the iron is saturated, the term (B_{hill}-B_{val})² is constant, hence F ∝ 1/²
OPERATING DIAGRAM

Energy-Field-Frequency Diagram

DEVIATION FROM THREE FOLD SYMMETRY - CONTOUR PLOT Step = 0.01 kG, Green: Negative, Blue: Zero, Red: Positive

SPIRAL POLE TIPS

Shiming To Correct Average Field Profile

$B(\theta) = B_{average} + B_1 \cos(\theta) + B_2 \dots$

1st Harmonic minimization

FIRST HARMONIC DRIVES RESONANCES

TRIM COIL INSTALLATION

Nu_r vs. Nu_z plot , showing different resonances

Precessional Extraction

In the extraction region of cyclotron, drops through the

$$V_{r} = 1$$

resonance. This passage produces a coherent amplitude

$$x_{c} = \frac{\pi R b_{1}}{B_{o}} \times \frac{1}{\sqrt{\frac{d v_{r}}{dn}}}$$

In the fringing field precession takes place giving additional turn separation

$$\frac{dR}{dn} = 2x_c \sin\pi (1 - v_r)$$

Median Plan View

Cross-section of Electrostatic Deflector

Achieved 50 kV with 6mm gap

Current....45 enA

DEFLECTOR TEST STAND

Electrostatic Deflectors

Electrostatic Deflector for SCC

- 2 Deflectors, 55° and 43°
- The High Voltage Electrode: special contour, made of Titatanium.
- Maximum applied Voltage ~100 kV
- Electrode is supported by three insulators
- Voltage Feed-through : Highly Insulated & Shielded
- Septum: Made of Tungsten, Very thin (0.3 mm)
- Power Supply : Remotely operated

Passive magnetic channels

Cryostat being assembled with Magnet Iron

Magnetic Channels

- 8 Passive Magnetic Channel
- Made of Iron Bars in Copper box, Locally reduce magnetic field to facilitate Beam Extraction, Movable radialy to suit dynamics of different ion species.
- 1 Active Magnetic Channel in the Yokehole

Bump profile used for "Precissional Extraction"

Fig. (6a) . Q/A = 0.25, E = 30 MeV/n, Bo = 46. KG

Fig. (6c). Q/A = 0.5, E = 56 MeV/n, Bo = 31 KG

Fig. (6b). Q/A = 0.25, E = 20 MeV/n, Bo =38 KG

Figures show horizontal beam width along the Extraction Path, Magnetic channels M1-M8 are passive.M9 is active. For M1, M2 dB/dx is 8.3 KG/inch, M3-M5 dB/dx=13.3 KG/in, M6,M7 8.3 KG/in, M8 is 11.6 KG/in. Simulated by code DEFINX for 3 different central magnetic field excitations.

MEDIAN PLANE VIEW

Bump profile used for "Precissional Extraction"

THETA = 336.0

K500 SUPERCONDUCTING CYCLOTRON EXTERNAL BEAMLINE LAYOUT

Error Correction in Average Field

Iron shims were added to remove unwanted dips in the average iron field distribution at about 4", 7" and 14" radii

Possible Parameters for the FIRST BEAM

Beam envelope for Q/A=0.5, Vinj=20 kV.

cyclotron

homogenous magnetic field isochronous (non-relativistic)

$$\frac{mv^2}{R} = qvB \quad R = \frac{mv}{Bq} \quad v_{orb} = \frac{Bq}{2\pi m}$$

- accelerate with RF electric field with v_{RF} = v_{orb}
- theory: homogeneous field
 no vertical orbit stability
 Iarge beamlosses
- pratice: due to fringefield effects B_z decreases with radius
 marginal vertical orbit stability
- gradual loss of synchronism: energy limit

cyclotron

- relativistic effects $\frac{\gamma m v^2}{R} = qvB$ $R = \frac{\gamma m v}{Bq}$ $v_{orb} = \frac{Bq}{2\pi\gamma m} = f(R)$
- rapid loss of synchronism: energy limit ~ 20 MeV protons
 - only useful for ions (m_p/m_e = 1836)
- two solutions
 - vary v_{RF} periodically: pulsed acceleration, synchro-cyclotron requires phase focussing (McMillan, Veksler; 1945)
 - restore isochronism B_z(r) = γ(r) B_z(0): isochronous cyclotron B_z increases with radius
 no vertical stability introduce sectors in magnetic field (Thomas; 1938):
 strong focussing

Vertical focusing

AVF or Thomas focusing (1938)

We need to find a way to increase the vertical focusing :

- $F_r v_{\theta} B_z$: ion on the circle
- $F_z = v_\theta B_r$: vertical focusing (not enough)

Remains

• F_x with v_r , B_0 : one has to find an azimuthal component B_0 and a radial component v_r (meaning a non-circle trajectory)

Sectors

Vertical focusing and isochronism

2 conditions to fulfil

Vertical focusing : F_x ~ v_x²

$$F = \frac{\langle B^{\perp} \rangle - \langle B \rangle^2}{\langle B \rangle^2} \approx \frac{\langle B_{ad} - B_{ed} \rangle^2}{8 \langle B \rangle^2}$$

 where is
 the average field over 1 turn

 Field modulation: or flutter

we can derive the betatron frequency:

The focusing limit is:

$$v_z^2 = n + \frac{N^2}{N^2 - 1}F + \dots > 0$$

Isochronism condition :

$$\overline{B}_{z}(r) = \gamma(r)\overline{B}_{z}(0) \Rightarrow \frac{\partial B_{z}}{\partial r} > 0 \Rightarrow n = 1 - \gamma^{2} < 0$$

$$\frac{N^2}{N^2 - 1} F > - n = \gamma^2 - 1$$

Energy max for conventionnal cyclotrons

A cyclotron is characterised by its K_b factor giving its max capabilities

$$W_{\max}(MeV \mid mucleon) = K_b \left\{\frac{Q}{A}\right\}^2$$
 with $K_b = 48,244 \left(Br_{ej}\right)^2$

W ∞ r²: iron volume as r³! → for compact r_{extraction} ~ 2 m.
 For a same ion or isobar A=cst, W_{max} grows with Q² (great importance of the ion sources of P. Spädtke)

Energy max for superconducting cyclotrons

Because of the focusing limitation due to the Flutter dependance on the B field:

$$W_{\max}$$
 (MeV / nucleon) = $K_f \left\{ \frac{Q}{A} \right\}$

Axial injection

- 1. The electrostatic mirror
 - Simpliest: A pair of planar electrodes which are at an angle of 45° to the incoming beam. The first electrode is a grid reducing transmission (65% efficiency).
 - smallest
 - High voltage
- 2. Spiral inflector (or helical channel)
 - analytical solution
- 3. The hyperboloid inflector
 - Simplier to construct because of revolution surface
 - No free parameters and <u>bigger</u> than a Spiral inflector
 - No transverse correlation. Easy beam matching
- The parabolic inflector: not use in actual cyclotron, similar to hyperboloid

Cyclotron resolution

An important figure for heavy ion cyclotrons is its mass resolution.

There is the possibility to have out of the source not only the desired ion beam (m_p,Q₀) but also polluant beams with close Q/m ratio.

If the mass resolution of the cyclotron is not enough, both beams will be accelerated and sent to the physics experiments.

Mass resolution:

$$\frac{\Delta\left(\frac{m}{Q}\right)}{\frac{m_0}{Q_0}} = \frac{1}{2\pi h N}$$

We want R small ⇒separation of close ion polluants

To have R small for a given harmonic h, the number of turn needs to be increase ⇔lowering the accelerating voltage ⇔small turn separation ⇔poor injection and/ or extraction.

AXIAL INJECTION SYSTEM USING ECR-1 & ECR-2

Simulation of 3D Field Distribution with TOSCA

Field measurement was not possible at all excitations and at all places due to inaccessibility. TOSCA simulation has been done to make up the data.

CRYOSTAT ASSEMBLY: COMPUTER MODEL

Shiming To Correct Average Field Profile

TRIM COIL INSTALLATION

Tungsten spark shield

SS Body

Titanium electrode

Electrostatic deflector

OPERATING DIAGRAM VECC K500 CYCLOTRON

Bending Limit : $K_b = 520$ Focusing Limit : $K_f = 160$

- Fully Stripped Heavy Ion Beams upto energy 80 MeV/A
- For Medium and Heavier Ion Beams Energy is limited to
 520.Q²/A² MeV/A
- Protons cannot be accelerated but singly charged hydrogen molecular ion can be accelerated which can be stripped at extraction
- It is planned to operate the cyclotron in first harmonic mode. And hence energies below 10 MeV/n is ruled out. Experimentalists should plan above 15-20 MeV/n

VECC K500 SCC

EXTRACTION SIMULATION

Energy vs. Nu_r, Nu_z plot, showing the values at E_{max}

Fourier analysis of the isochronous field obtained from Trim coil fitting program.

R [inch]

Contour plot of the isochronous field obtained from Trim coil fitting program.

/user/jeyants/mycode/work/Hel-20/b_isot.det

R

DEF	TH BAR	R BAR	AL BAR	R RAY	AL RAY	X AV	
8	147.00	27.730	4.300	27.710	0.678	0.016	
9	147.00	27.730	-2.200	27.710	0.678	0.001	
10	203.00			28.324	2.309		
11	229.00			28.986	3.540		
12	239.00			29.332	4.194		
13	259.00			30.259	6.350		
14	269.00			30.945	8.433		
15	279.00			31.902	11.596		
16	289.00			33.310	16.561		
17	322.84	49.624	51.243	49.431	51.719	-0.091	

25	х	+.25	-1.0	Х
I	1		1	- 1
	\mathbf{D}			
	հ			
	1			

|--|

+1,0

OFF FIELD AT TH -338.0 330.0 DEG DR -59.6604 ,DPR/P - 0.8737

R - 26.2900 PR - 1.1500 E - 20.00

DEF	TH1	TH2	TYP	E,B,R	DBR, AL	DE1,TH	DE2
6	337.00	32.00	1	64.590	0.000	0.000	0.000
7	94.00	137.00	1	64.590	0.000	0.000	0.000
8	140.09	147.00	3	27.730	4.300	0.000	0.000
9	147.00	152.91	3	27.730	-2.200	0.000	0.000
10	200.00	206.00	2	1.150	8.300	0.000	0.000
11	226.00	232.00	2	1.150	8.300	0.000	0.000
12	236.00	242.00	2	0.000	0.000	0.000	0.000
13	256.00	262.00	2	1.150	8.300	0.000	0.000
14	266.00	272.00	2	1.150	8.300	0.000	0.000
15	276.00	282.00	2	1.150	8.300	0.000	0.000
16	286.00	292.00	2	1.150	8.300	0.000	0.000
17	316.72	327.68	5	49.624	51.243	322.843	0.000
18	319.51	326.50	4	27.776	3.000	0.000	0.000
19	327.50	334.49	4	27.776	-3.000	0.000	0.000
20	45.91	58.09	4	28.950	0.000	0.000	0.000

DEF	TH BAR	R BAR	AL BAR	R RAY	AL RAY	X AV	25 X +.25	-1.0	x +1.0
8	147.00	27.731	4.300	27.710	0.680	0.015		I	1 1
9	147.00	27.731	-2.200	27.710	0.680	0.001			
10	203.00	28.304	2.300	28.326	2.312	0.009			
11	229.00	28. 97 0	3.400	28.990	3.549	0.007			
12	239.00			29.336	4.205				
13	259.00	30.244	6.600	30.266	6.368	0.009			
14	269.00	30.932	8.500	30.954	8.457	0.011			
15	279.00	31.898	11.600	31.915	11.633	0.007			
16	289.00	33.315	16.900	33.328	16.615	0.007			
17	322.84	49.624	51.243	49.530	51.795	-0.031			ų –
OFF	FIELD AT	тя -338	.0 3	30.0 DEG	DR -59.	8010 ,DPR/P	2 - 0.8740		

R - 26.2900 PR - 1.1500 E - 20.00

DEF	TH1	TH2	TYP	E,B,R	DER, AL	DE1,TH	DE2
6	337.00	32.00	1	64.590	0.000	0.000	0.000
7	94.00	137.00	1	64.590	0.000	0.000	0.000
8	140.09	147.00	3	27.731	4.300	0.000	0.000
9	147.00	152.91	3	27.731	-2.200	0.000	0.000
10	200.00	205.98	3	28.304	2.300	0.000	0.000
11	226.01	231.97	3	28.970	3.400	0.000	0.000
12	236.00	242.00	2	0.000	0.000	0.000	0.000
13	256.01	261.95	3	30.244	6.600	0.000	0.000
14	266.01	271.94	3	30.932	8.500	0.000	0.000
15	276.03	281.91	3	31.898	11.600	0.000	0.000
16	286.10	291.82	3	33.315	16.900	0.000	0.000
17	316.72	327.68	5	49.624	51.243	322.843	0.000
18	319.51	326.50	4	27.776	3.000	0.000	0.000
19	327.50	334.49	4	27.776	-3.000	0.000	0.000
20	45.91	58.09	4	28.950	0.000	0.000	0.000

Trajectories through the Extraction system

BETA (M) - 0.903 GAMMA (1/M) - 1.767 ALPHA - -0.771

Z ELLIPSE SQSIG11 (MM) - 85.372 SQSIG22 (MRAD) - 63.792 R12 - 0.985 EMITTANCE (MM*MRAD) - 955.001*PI BETA (M) - 7.632 GAMMA (1/M) - 4.261 ALPHA - -5.614

Median Plan View of the K-500 SCC VEC showing the Extraction Elements with the Extracted Beam [He⁺¹ 20 Mev/A]

