INJECTION

AND

EXTRACTION SYSTEM

OF

SUPERCONDUCTING CYCLOTRON

C. MALLIK
VECC

KOLKATA

$\mathrm{E}($ Energy $)=\mathrm{B}^{2} \mathrm{R}^{2} \mathrm{Q}^{2} / 2 \mathrm{M}$

Superconducting cyclotron (1985)

- Most existing cyclotrons utilize room temperature magnets Bmax $=2 \mathrm{~T}$ (iron saturation)
- Beyond that, superconducting coils must be used: $B_{\text {till }} \sim 6 T$

1. Small magnets for high energy
2. Low operation cost

VECC

SCC

SCC

142 cm
5.8 Tesla 40KW

K500

RF System Specification

Frequency range	$9-27 \mathrm{MHz}$
Harmonics	$\mathbf{1 , 2 , 3 , 4 , 5 , 7}$
Dee Voltage	100 kV max.
Frequency stability	1×10^{-7}
Amplitude stability	$\mathbf{1 \times 1 0 ^ { - 4 }}$
Phase stability	$<\mathbf{0 . 5}^{0}$

ECR ION SOURCE

Electron temperature

224cm Variable Energy Cyclotron

Schematic of central region modifications

Axial injection

1. The electrostatic mirror

* Simpliest A pair of planar electrodes which are at an angle of 45° to the incoming beam. The first electrode is a grid reducing trawaission (65% eftisiency)
* smallest
- High voltage

ECR ION SOURCE

Argon Beam Spectrum

ECR Ion Source

Fabrication Completed, Ready for Assembly

14 GHz ECR ION SOURCE

BEAM ENVELOPE FOR AXIAL INJECTION LINE

Spiral inflector

- First used in Grenoble (J.L. Pabot J.L. Belnonit)
- Consiste of 2 cylindrical capacitors which have been twisted to take into account the spiralling of the ion trajectory from magnet field.
$\vec{v}_{\text {buax }} \perp \vec{E}$: central trajectory lies on an equipotential surface. Allows lower voltage than with mimors.
- 2 free parameters (spirall size in z and $x y$) giving flexibility for central region design
- 100% transmission
LI

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & h^{-1 / 2} & K & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
-h^{-1} / 2 & -K & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \text {, (vaysing axial field) } \\
& \left(\begin{array}{cccccc}
0 & 1 & -C h & 0 & 0 & 0 \\
-S^{2} H^{2} & 0 & -S h / A & 0 & 0 & S K \\
C H^{-} & 0 & 0 & 1 & 0 & 0 \\
-S K / A & 0 & 0 & 0 & 0 & 2 / A \\
-S K & 0 & -1 / A & 0 & 0 & 1 \\
-C K / A & 0 & 0 & -1 / A & 0 & 0
\end{array}\right) \text {. (siral indectar) }
\end{aligned}
$$

where $h^{\prime}-1 / \rho, A$ is the jntiertor intight, $3-$ sin $(s / A), C=$ $\cos (s / A)$, s is the independent variable and is set to zero at the inflector entrance. For the spiral inflector, the two transfer matrices

Figure 2: The spiral inflector.

Electric potential distribution for central region electrode structures as simulated with the code RELAX3D. (a) The equipotential contours for dee-1 kept at $\mathrm{V}_{\text {dee }}$ and other electrodes grounded. (b) and (c) shows the similar picture for dee-2 and dee-3 kept at $\mathrm{V}_{\text {dee }}$ respectively while others grounded. (d) shows the distribution when all the dees are at $\mathrm{V}_{\mathrm{dee}}$; the dees, dummy dees and posts are also shown.

RELAX3D, ANSYS

CENTRAL PLUG

Central Region Electrode Structure and Reference Trajectory

$\mathrm{Q} / \mathrm{A}=0.3737 \mathrm{MeV} / \mathrm{n}$

Sectional view of Median Plane of Cyclotron

Relativistic case

Isochronism and Lorente factor

$$
\begin{gathered}
\mathrm{m}=\gamma \mathrm{m}_{\mathrm{a}}=\frac{\mathrm{m}_{0}}{\sqrt{1-\beta^{2}}} \quad, \quad \beta=\frac{y}{\mathrm{c}} \\
\omega_{\mathrm{mw}}=\frac{Q B\left(r^{\prime}\right)}{\gamma(r) m_{0}}
\end{gathered}
$$

$\omega_{\text {rev }}$ constant if $\left.\mathrm{B}(\mathrm{r})=\mathrm{(r}\right) \mathrm{B}_{0} /$ increasing field $(\mathrm{n}<0)$

Not compatible with a decreasing field for vertical focusing

Tunes

$$
\nu_{r}^{2}=1+\kappa, \text { and } \nu_{z}^{2}=-\kappa+F^{2}\left(1+2 \tan ^{2} \xi\right)
$$

These expressions were originally derived by Symon, Kerst, Jones, Laslett, Terwilliger in the original 1956 Phys. Rev. paper about FFAGs.

Note: Since there is now a distinction between local curvature (ρ) and global (R), the definition of field index is ambiguous. The local index, used in the dipole transfer matrix, is $k=\frac{\rho}{B} \frac{d B}{d \rho}$, while the Symon formula uses $\kappa=\frac{R}{B} \frac{d B}{d R} \approx$ $k \frac{R}{\rho}$. It is in fact this latter quantity which must be equal to $\beta^{2} \gamma^{2}$ for isochronism.

For isochronous machines, we therefore have

$$
\nu_{r}=\gamma, \text { and } \nu_{z}^{2}=-\beta^{2} \gamma^{2}+F^{2}\left(1+2 \tan ^{2} \xi\right)
$$

Energy and focusing limits

1. For conventional cyclotron, F increases for small hill gap (Bhill 7) and deep valley ($\mathrm{B}_{\text {va }} \triangle$) but does not depend on the magnetic field level:

$$
F=\frac{\left(B_{\text {hui }}-B_{\mathrm{m}}\right)}{8(B)^{2}}
$$

2. For superconducting cyclotron, the iron is saturated, the term $\left(\mathrm{B}_{\text {will }}-\mathrm{B}_{\mathrm{wal}}\right)^{2}$ is constant, hence $\mathrm{F} \propto 1 /<\mathrm{B}>2$

OPERATING DIAGRAM

Energy-Field-Frequency Diagram

Energy[MieV/n]
$\begin{array}{llllllllllllllll}0.36 & 1.4 & 3.3 & 5.8 & 9.1 & 13.2 & 18 & 23.5 & 29.7 & 36.7 & 44.4 & 52.8 & 60.0 & 72\end{array}$

DEVIATION FROM THREE FOLD SYMMETRY - CONTOUR PLOT Step $=0.01 \mathrm{kG}$, Green: Negative, Blue: Zero, Red: Positive

SPIRAL POLE TIPS

Shiming To Correct Average Field Profile

$B(\theta)=B_{\text {average }}+B_{1} \operatorname{Cos}(\theta)+B_{2} \ldots \ldots \ldots$

$1{ }^{\text {st }}$ Harmonic minimization

First Harmonic Minimization By Adding Iron Shims

FIRST HARMONIC DRIVES RESONANCES

TRIM COIL INSTALLATION

Eile Selecter

- 7 -
Help
Dismiss|
$\frac{\text { x }]-\times \mathbb{x}]-9-1-1]}{\text { user3 accelcod src loac }}$

/user3/accelcod/src/load

Title: K500: $1603+$ at $12.54 \mathrm{MeV} / \mathrm{u}$ (Profile:/user3/accelcod/testrun/final_spiralvecc.pro)

Bars On (Calculate fields)

Actual Dee Voltage Profile

Correct nu_z

Intermediate E.O. Output

Full Circle Field

Max Iterateration =

Nu_r vs. $\mathrm{Nu}_{-} \mathbf{z}$ plot , showing different resonances

Calculated isochronous average field

Bump profile used for "Precissional Extraction"

Bump profile used for "Precissional Extraction"

Precessional Extraction

In the extraction region of cyclotron, drops through the

$$
v_{r}=1
$$

resonance. This passage produces a coherent amplitude

$$
x_{c}=\frac{\pi R b_{1}}{B_{o}} \times \frac{1}{\sqrt{\frac{d v_{r}}{d n}}}
$$

In the fringing field precession takes place giving additional turn separation

$$
\frac{d R}{d n}=2 x_{c} \sin \pi\left(1-v_{r}\right)
$$

Bump profile used for "Precissional Extraction"

Median Plan View

Cross-section of Electrostatic Deflector

Electrostatic Deflectors

Electrostatic Defiector for SGC

- 2 Deflectors, 55° and 43°
- The High Voltage Electrode: special contour, made of Titatanium.
- Maximum applied Voltage $\sim 100 \mathrm{kV}$
- Electrode is supported by three insulators
- Voltage Feed-through : Highly Insulated \& Shielded
- Septum: Made of Tungsten, Very thin (0.3 mm)
- Power Supply : Remotely operated

Passive magnetic channels

Cryostat being assembled with Magnet Iron

Magnetic Channels

- 8 Passive Magnetic Channel
- Made of Iron Bars in Copper box, Locally reduce magnetic field to facilitate Beam Extraction, Movable radialy to suit dynamics of different ion species.
- 1 Active Magnetic Channel in the Yokehole

Bump profile used for "Precissional Extraction"

Fig. (6a). $\mathrm{Q} / \mathrm{A}=0.25, \mathrm{E}=30 \mathrm{MeV} / \mathrm{n}, \mathrm{Bo}=46 . \mathrm{KG}$

Fig. (6 c). $\mathrm{Q} / \mathrm{A}=0.5, \mathrm{E}=56 \mathrm{MeV} / \mathrm{n}, \mathrm{Bo}=31 \mathrm{KG}$

Fig. (6b). $\mathrm{Q} / \mathrm{A}=0.25, \mathrm{E}=20 \mathrm{MeV} / \mathrm{n}, \mathrm{Bo}=38$ KG

Figures show horizontal beam width along the Extraction Path, Magnetic channels M1-M8 are passive.M9 is active. For M1, M2 dB/dx is 8.3 KG/inch, M3-M5 dB/dx=13.3 KG/in, M6,M7 8.3 KG/in, M8 is $11.6 \mathrm{KG} / \mathrm{in}$. Simulated by code DEFINX for 3 different central magnetic field excitations.

MEDIAN PLANE VIEW

Bump profile used for "Precissional Extraction"

K500 SUPERCONDUCTING CYCLOTRON EXTERNAL BEAMLINE LAYOUT

THANKS

Error Correction in Average Field Distrihution

LAYOUT OF WERTICAL SECTION OF INJECTION LINE FOR VEC K-5OO SUPERCONDUCTING CYCCLOTRON

Possible Parameters for the FIRST BEAM

Beam envelope for $\mathrm{Q} / \mathrm{A}=0.5$, $\mathrm{Vinj}=20 \mathrm{kV}$.

cyclotron

- homogenous magnetic field isochronous (non-relativistic)

$$
\frac{m v^{2}}{R}=q v B \quad R=\frac{m v}{B q} \quad v_{\text {opt }}=\frac{B q}{2 \pi m}
$$

- accelerate with RF electric field with $v_{R F}=v_{\text {orb }}$
- theory: homogeneous field + no vertical orbit stability
\rightarrow large beamlosses
- pratice: due to fringefield effects B_{2} decreases with radius
+ marginal vertical orbit stability
- gradual loss of synchronism: energy limit

cyclotron

- relativistic effects $\frac{\gamma m v^{2}}{R}=q v B \quad R=\frac{\gamma m v}{B q} \quad v_{\text {ot }}=\frac{B q}{2 \pi \gamma m}=f(R)$
- rapid loss of synchronism: energy limit $\sim 20 \mathrm{MeV}$ protons
- only useful for ions ($\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}=1836$)
- two solutions
- vary V_{RF} periodically: pulsed acceleration, synchro-cyclotron requires phase focussing (McMillan, Veksler; 1945)
- restore isochronism $\mathrm{B}_{2}(r)=\gamma(r) \mathrm{B}_{2}(0)$: isochronous cyclotron B_{2} increases with radius $\boldsymbol{\&}$ no vertical stabilility introduce sectors in magnetic field (Thomas; 1938):
"strong" focussing

Vertical focusing

AVF of Thomas focusing (1938)
We need to find a way to increase the vertical focusing :

- $F_{r} \quad v_{\theta} B_{z}$: ion on the circle
- $F_{Z} v_{E} B_{r}$: vertical focusing (not enough)

Remains

- F_{z} with v_{r}, B_{E} : one has to find an aximuthal component B_{θ} and a radial component v_{F} (meaning a non-circle trajectory)

Vertical focusing and isochronism

2 conditions to fulfil

- Vertical fucusine: $F_{x}-v_{n}^{2}$

- Field modulation OI

$$
\text { where } 4 B \text { is }
$$

the average tield
OI

$$
y_{z}^{2}=n+\frac{N^{2}}{N^{2}-1}+\ldots>0
$$

- Jenchronimmeondition:

$$
\bar{B}_{ \pm}(r)=\gamma(r) \bar{B}_{z}(0) \Rightarrow \frac{\partial B_{ \pm}}{\hat{B r}}>0 \Rightarrow n=1-\gamma^{2}<0
$$

The focusing limit is:

$$
\frac{N^{2}}{N^{2}-1} F>-n=y^{2}-1
$$

Energy max for conventionnal cyclotrons

A cyclotron is characterised by its \mathbb{K}_{b} factor giving its max capabilities

$$
W_{\operatorname{ma}}(\text { MeV } / \text { moleon })=K_{b}\left\{\frac{Q}{A}\right\}^{2} \text { with } K_{b}=48,244\left(B^{k} y_{b}\right)^{2}
$$

- W $\propto r^{2}$: iron volume as $r^{3}!\rightarrow$ for compact $r_{\text {ostration }} \sim 2 \mathrm{~m}$,
- For a same ion or isobar $\mathrm{A}=\mathrm{cst}, \mathrm{W}_{\text {max }}$ grows with Q^{2} (great importance of the ion sources cf P . Spidtke)

Energy max for superconducting cyclotrons

Because of the focusing limitation due to the Flutter dependance on the B field:

$$
W_{\max }(\text { MeV } / \text { nucleon })=K_{f}\left\{\frac{Q}{A}\right\}
$$

Axial injection

I. The electrosutic mimor

- Simpliest A pair of planar electrodes which areat an angle of 45° to the incoming beam. The fifst electrode is a grid redueing transingion (65% eftictancy)
- Hmallest
- High wollage

2. Spiral inflector (or helical channel)

- analytical solution

3. The hyperboloid intlector

- Simplier to construct because of revolution surfice
- No free parameters and bigger tham a Spiral inflector
- No transverse comeletion. Easy beam matching

4. The parabolic inflector ont use in actual cyclotom, similar bo hyperboloid

Cyclotron resolution

An important figure for heavy ion cyclotrons is its mass resolution.
There is the possibility to have out of the source vot only the desired ion beam $\left(\mathrm{m}_{\mathrm{w}} \mathrm{Q}_{0}\right)$ but also polluant beams with close O m ratio.

If the mass resolution of the cyclotron is not enough, both beams will be accelerated and sent in the physics experinents.

Mass resilationt $N=\frac{\Delta\left(\frac{m}{D}\right)}{\frac{H}{0}}=\frac{1}{2 \pi N}$
We want R snall \Rightarrow separation of close ion pollusints

To have R small for given hamonic h, the nomber of tum needs to be increase \Rightarrow lowering the accelerating voltage $\%$ sumall tim separation fpoor injection and' or extraction.

AXIAL INJECTION SYSTEM USING ECR-1 \& ECR-2

Simulation of 3D Field Distribution with TOSCA

magnetic field simulation of $k 500$ sce magnet 18/Jul/2006 14:17:01

F VECTOR FIELDS

Field measurement was not possible at all excitations and at all places due to inaccessibility. TOSCA simulation has been done to make up the data.

CRYOSTAT ASSEMBLY: COMPUTER MODEL

Shiming To Correct Average Field Profile

TRIM COIL INSTALLATION

CENTRAI, PIIUG

Plug hill part

Added shim

Electrostatic deflector

OPERATING DIAGRAM VECC K500 CYCLOTRON

Heavy Ion Acceleration

Bending Limit : $\mathrm{K}_{\mathrm{b}}=\mathbf{5 2 0}$
 Focusing Limit : $\mathbf{K}_{\mathrm{f}}=\mathbf{1 6 0}$

- Fully Stripped Heavy Ion Beams upto energy $80 \mathrm{MeV} / \mathrm{A}$
- For Medium and Heavier Ion Beams Energy is limited to

$$
\text { 520. } \mathbf{Q}^{2} / \mathbf{A}^{2} \quad \mathrm{MeV} / \mathbf{A}
$$

Protons cannot be accelerated but singly charged hydrogen molecular ion can be accelerated which can be stripped at extraction - It is planned to operate the cyclotron in first harmonic mode. And hence energies below $10 \mathrm{MeV} / \mathrm{n}$ is ruled out. Experimentalists should plan above 15-20 MeV/n

VECC K500 SCC

EXTRACTION SIMULATION

Energy vs. $\mathbf{N u}_{\mathrm{r}}, \mathbf{N u}_{\mathrm{z}}$ plot, showing the values at $\mathbf{E}_{\text {max }}$

Fourier analysis of the isochronous field obtained from Trim coil fitting program.

Contour plot of the isochronous field obtained from Trim coil fitting program.

Bump profile used for "Precissional Extraction"

Bump profile used for "Precissional Extraction"

DEF	TH EAR	R BAR	AL BAR	R RAY	AL RAY	x AV	$-.25 \quad \mathrm{x} \quad+.25$	-1.0	X	+1.0
8	147.00	27.730	4.300	27.710	0.679	0.016		,	1	1
9	147.00	27.730	-2.200	27.710	0.678	0.001	J			
10	203.00			28.324	2.309					
11	229.00			29.986	3.540					
12	239.00			29.332	4.194					
13	259.00			30.259	6.350					
14	269.00			30.945	9.433					
15	279.00			31.902	11.596					
16	299.00			33.310	16.561					
17	322.84	49.624	51.243	49.431	51.719	-0.091			(

OFF FIEUD AT TH $\mathbf{- 3 3 9} 0 \quad 330.0$ DEK DR $-59.6604, \mathrm{DFR} / \mathrm{F}=0.9737$
$\mathrm{R}=26.2900 \quad \mathrm{FR}=1.1500 \mathrm{E}=20.00$

DEF	TH1	TH2	TYP	$\mathrm{E}_{r} \mathrm{~B}_{r} \mathrm{R}$	$\mathrm{DER}_{5} \mathrm{AL}$	DE1, TH	DE2
6	337.00	32.00	1	64.590	0.000	0.000	0.000
7	94.00	137.00	1	64.590	0.000	0.000	0.0000
9	140.09	147.00	3	27.730	4. 300	0.000	0.000
9	147.00	152.91	3	27.730	-2. 200	0.000	0.000
10	200.00	206.00	2	1.150	8. 300	0.000	0.000
11	226.00	232.00	2	1.150	8. 300	0.000	0.000
12	236.00	242.00	2	0.000	0.000	0.000	0.000
13	256.00	262.00	2	1.150	9. 300	0.000	0.000
14	266.00	272.00	2	1.150	9. 300	0.000	0.000
15	276.00	292.00	2	1.150	9. 300	0.000	0.000
16	296.00	292.00	2	1.150	8. 300	0.000	0.000
17	316.72	327.68	5	49.624	51.243	322.843	0.000
19	319.51	326.50	4	27.776	3.000	0.000	0.000
19	327.50	334.49	4	27.776	-3. 000	0.000	0.000
20	45.91	58.09	4	28.950	0.000	0.000	0.000

DEF	TH EAR	R EAR	AL EAR	R RAY	AL RAY	x AV	$-.25 \quad \mathrm{x}$ +.25	-1.0	X	+1.0	
9	147.00	27.731	4.300	27.710	0.680	0.015		,	,	,	
9	147.00	27.731	-2.200	27.710	0.680	0.001	1				
10	203.00	29.304	2.300	29.326	2.312	0.009	V				
11	229.00	29.970	3.400	28.990	3.549	0.007	1				
12	239.00			29.336	4.205						
13	259.00	30.244	6.600	30.266	6.368	0.009	1				
14	269.00	30.932	9.500	30.954	8.457	0.011	1				
15	279.00	31.898	11.600	31.915	11.633	0.007	\\|				
16	299.00	33.315	16.900	33.328	16.615	0.007	1				
17	322.84	49.624	51.243	49.530	51.795	-0.031			1.		

OFF FIEUD AT TH $\mathbf{- 3 3 9} 0 \quad 330.0 \mathrm{DEG} \mathrm{DR}-59.8010, \mathrm{DFR} / \mathrm{P}=0.9740$
$\mathrm{R}=26.2900 \quad \mathrm{FR}=1.1500 \mathrm{E}=20.00$

DEF	TH1	TH2	TYP	$\mathrm{E}_{f} \mathrm{~B}, \mathrm{R}$	$\mathrm{DER}_{5} \mathrm{AL}$	DE1, TH	DE2
6	337.00	32.00	1	64.590	0.000	0.000	0.000
7	94.00	137.00	1	64.590	0.000	0.000	0.0000
9	140.09	147.00	3	27.731	4.300	0.000	0.000
9	147.00	152.91	3	27.731	-2. 200	0.000	0.000
10	200.00	205.98	3	28.304	2. 300	0.000	0.000
11	226.01	231.97	3	29.970	3. 400	0.000	0.000
12	236.00	242.00	2	0.000	0.000	0.000	0.000
13	256.01	261.95	3	30.244	6.600	0.000	0.000
14	266.01	271.94	3	30.932	9. 500	0.000	0.000
15	276.03	291.91	3	31.898	11. 600	0.000	0.000
16	296.10	291.92	3	33.315	16.900	0.000	0.000
17	316.72	327.68	5	49.624	51.243	322.843	0.000
19	319.51	326.50	4	27.776	3.000	0.000	0.000
19	327.50	334.49	4	27.776	-3.000	0.000	0.000
20	45.91	58.09	4	29.950	0.000	0.000	0.000

Trajectories through the Extraction system

Bump profile used for "Precissional Extraction"

Bump profile used for "Precissional Extraction"

Bump profile used for "Precissional Extraction"

Bump profile used for "Precissional Extraction"

Median Plan View of the K-500 SCC VEC showing the Extraction Elements with the Extracted Beam [$\left.\mathrm{He}^{+1} 20 \mathrm{Mev} / \mathrm{A}\right]$

