Practical Accelerator Physics

Chandra Bhat

Fermi National Accelerator Laboratory USA

January 7-11, 2008 Lectures at RRCAT, Indore, India

These lectures are available on http://www-ap.fnal.gov/users/cbhat/

3-5

Syllabus

- Introduction, Basic Definitions and Formulas, Units and Terminology, Basic Lecture 1 \succ Relativistic Formalism, Types of Accelerators, An example of a high energy accelerator complex.
- Lecture 2 Accelerator Optics and Transverse Beam Dynamics \succ
 - -Accelerator and beamline magnets
 - -Beam transport and FODO lattice
 - -Weak and strong focusing, circular accelerators
 - -Coordinate system, Hills equation, Aspects of transverse beam dynamics
- Lectures Longitudinal Beam Dynamics
 - -RF cavities

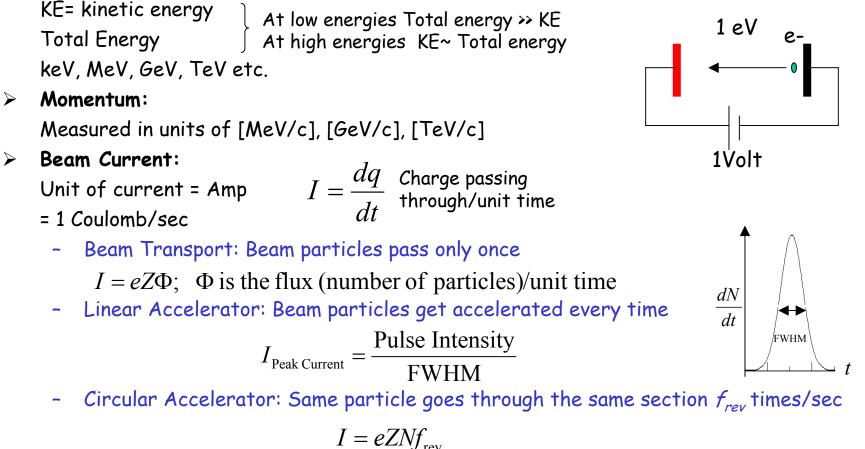
-Equations of motion and Longitudinal Phase space, RF bucket and area

- Beam Diagnostic Instrumentation \geq
- Practical Issues for commissioning and operation of the accelerator \triangleright

-Closed orbit, closure, tune, tune space

- -Chromaticity and chromatic corrections
- -Beam injection and extraction issues
- -Aperture scan and optimization
- -Beam Acceleration and beam storage
- -RF capture and RF gymnastics
- Recent Developments in Beam operation: RF gymnastics \geq

[Bias towards protons]


*

Terminology in Accelerator Physics

Units: In accelerator literature one comes across both MKS and CGS systems. In these lectures I will try to stick to the MKS system.

> Energy:

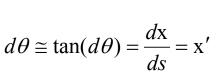
Electron volt: It is the amount of kinetic energy gained by a single unbound electron when it passes through an electrostatic potential difference of one volt

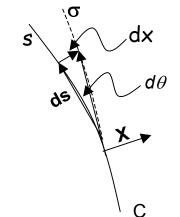
춗

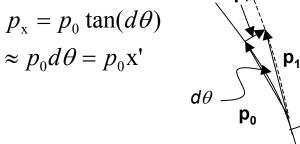
Luminosity: is the total number of interactions/unit area/unit time during collisions of two entities

> Phase Space:

A particle is characterized by its Position coordinate- x a Momentum coordinate - p The space in which all possible values for "x" and "p" can be represented is phase space


Assume that trajectory of a particle, σ , is in the plane of paper (board). Let "C" be the reference trajectory (beam center) and "s" be its curvilinear coordinate along "C"


- Phase space with (x,p_x) as coordinate axes is called "horizontal phase space"
- Similarly "vertical phase space"


Liouville's Theorem: "In the absence of collision and dissipation, the local density in phase space must remain constant."

 $\int pd\mathbf{x} = \text{constant}$

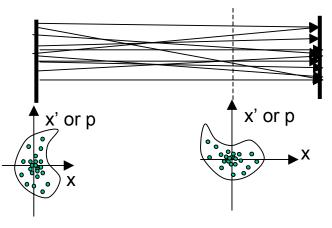
 $L = f \frac{N_1 N_2}{A_{eff}} = \frac{\text{Number of Events for a Process}}{\text{Cross Section for the Process}}$

If ρ_1 and ρ_2 are phase space densities at instants t_1 and t_2 then, $\rho_1 = \rho_2 \rightarrow$ Phase space volumes or areas are the same

C

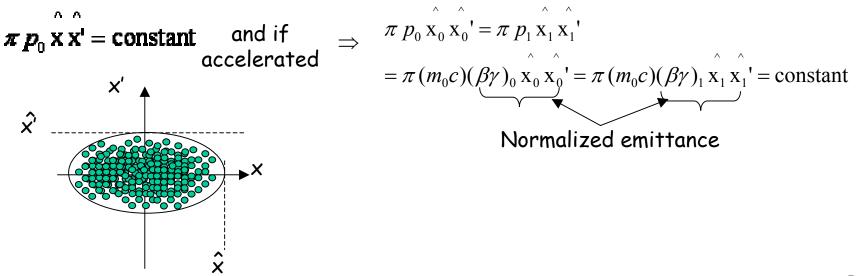
Examples

Beam transport:


t= t1 t=t2

Part#1 (x1, x1') (x1+v∆t, x1')

Part#2 (x2, x2') (x2+ $v\Delta t$, x2')


Relative distance do not change. Hence, density remain unchanged, and so on.

No acceleration

<u>Beam Acceleration:</u> Similar visualization is a bit difficult but, is still true.

If phase space distribution of all the particles in a beam form an ellipse with \hat{x} and \hat{x} as their maximum values then the Liouville's theorem states that

Relativistic Expressions

The total energy of an accelerted particle in a high energy accelerator is often » rest mass energy of the particle. So we have to use relativistic mechanics

$$\Delta s = \gamma \Delta s^{*} \text{ where } \gamma = (1 - \beta_{s}^{2})^{-\frac{1}{2}} \qquad * \Rightarrow \text{Lab frame of reference}$$

$$\Rightarrow V = \gamma V^{*} ; \text{ Volume scales linearly with } \gamma$$

$$\Rightarrow \rho = \frac{\rho^{*}}{\gamma} ; \text{ charge density scales as } 1/\gamma$$

$$\underline{\text{Total Energy:}} \qquad E = \gamma m_{0}c^{2} \qquad \underline{\text{Kinetic Energy:}} \qquad E_{kin} = E - m_{0}c^{2} = (\gamma - 1)m_{0}c^{2}$$

$$= \sqrt{p^{2}c^{2} + m_{0}^{2}c^{4}} \qquad \Delta E_{kin} = \int_{Laccel} ds$$

$$\underline{\text{Momentum of a Particle:}} \qquad cp = \sqrt{E^{2} - m_{0}^{2}c^{4}} = \beta\gamma m_{0}c^{2} \qquad \underline{\text{Electromagnetic Field:}} \qquad B^{*} = \gamma [B - \beta E]$$

Differential Forms:

$$dcp = \frac{m_0 c^2}{\beta} d\gamma = \frac{dE}{\beta} = \frac{dE_{kin}}{\beta} = \gamma^3 m_0 c^2 d\beta$$

$$\frac{dcp}{cp} = \frac{1}{\beta^2} \frac{d\gamma}{\gamma} = \gamma^2 \frac{d\beta}{\beta}$$

Electromagnetic Field:

$$E_x^* = \gamma [E_x - \beta_s B_y];$$
 $B_x^* = \gamma [B_x - \beta_s E_y]$
 $E_y^* = \gamma [E_y - \beta_s B_x];$ $B_y^* = \gamma [E_y + \beta_s E_x]$
 $E_s^* = E_s;$ $B_z^* = B_z$

A pure electric/magnetic field in the lab-frame of reference will be a combination of "E" and "M" fields in particle-frame of reference.

Maxwell's Equations

Gauss law for E
$$\oint_{S} \stackrel{\rho}{E} \cdot dA = \frac{q}{\varepsilon_{0}}$$
Gauss law for B
$$\oint_{S} \stackrel{\rho}{B} \cdot dA = 0$$
Faraday's law
$$\oint_{L} \stackrel{\rho}{E} \cdot dl = -\frac{d\phi_{B}}{dt}$$
Ampere's law
$$\oint_{L} \stackrel{\rho}{B} \cdot dl = \mu_{0}I + \mu_{0}\varepsilon_{0}\frac{d\phi_{E}}{dt}$$

 $\mathcal{E}_0 = \text{permittivity constant} = \text{absolute di-electric constant}, = 8.859 \times 10^{-12} \text{ Columb}^2/\text{Newton.meter}^2$

Lorentz Force:

$$\vec{F} = q(\vec{E} + (\vec{V} \times \vec{B}))$$
 Change in mome

Change in kinetic energy:

$$\Delta E_{kin} = \int \vec{F} \cdot d\vec{s} ; ds = \beta c dt$$
$$\Delta E_{kin} = \beta c \Delta p$$

How electric charge gives rise to electric field; field lines begin and end on charges

No magnetic charge; magnetic field lines do not begin or end.

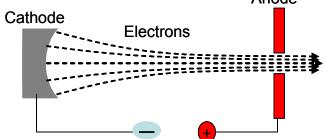
Changing magnetic field induces electric field.

A steady electric field gives rise to magnetic field. 2nd Term is displacement current

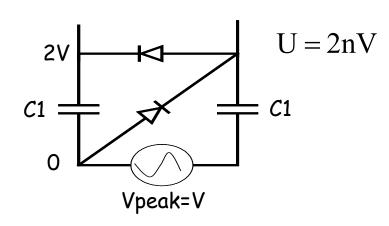
 $\mu_0 =$ Permeability constant, =4 $\pi \times 10^{-7}$ Tesla meter/Amp

ge in momentum:
$$\Delta p = \int \vec{F}.dt$$

$$\Delta E_{kin} = q \int \vec{E} \cdot d\vec{s} + q \int (\vec{v} \times \vec{B}) \vec{v} dt$$


Types of Accelerators

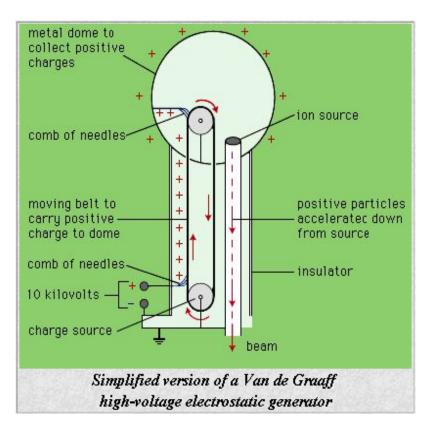
- The charged particle accelerators are broadly classified into two types. \triangleright
 - Linear Accelerators: Cascade Accelerators, Van De Graff, LINAC, RFQ etc.
 - Circular Accelerators: Cyclotron, Microtron, Synchrotron, Betatron, etc.


Linear Accelerators:

In a linear accelerator charged particles are accelerated either by electrostatic Anode fields or rf (radio-frequency) cavities.

$$\Delta p = \int F dt = q \int E dt$$
$$\Delta E = q \int E ds$$

<u>Cockcroft-Walton Accelerators or</u> Cascade Accelerators


Van de Graff Accelerators

The electro static potential of the R large sphere is partly caused by "q" () and partly by its own charge $V_{R} = \frac{1}{4\pi\varepsilon_{0}} \left[\frac{Q}{R} + \frac{q}{R} \right]$ q $V_{r} = \frac{1}{4\pi\varepsilon_{0}} \left[\frac{q}{r} + \frac{Q}{R} \right]$ V is always +ve, This $V = V_{r} - V_{R} = \frac{q}{4\pi\varepsilon_{0}} \left[\frac{1}{r} - \frac{1}{R} \right]$ V is the principle of Van-de Graff

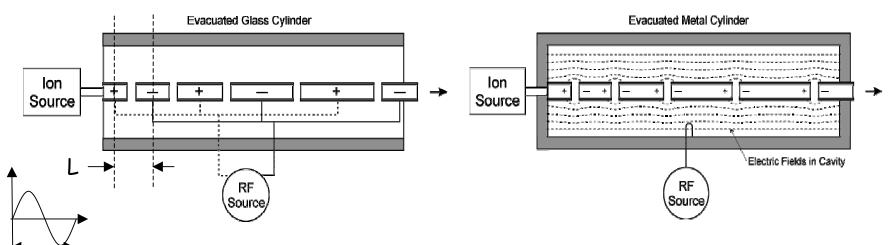
Van-de Graaff and Pelletrons

Simplified version of Van de Graaff

The charges always move from inside sphere to outside Dome

A Pelletron is an electrostatic accelerator with an improved belt design; it has a moving belt made of metal pellets connected with nylon links to carry the charge.

Fermilab 4.3 MeV Pelletron for antiproton cooling in the 8 GeV Recycler


 $\overline{T_{rf}}$

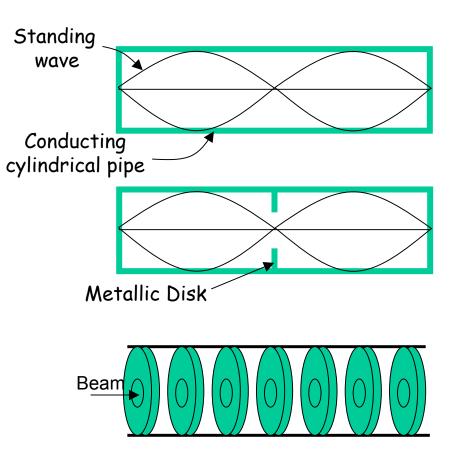
LINAC

In its simplest form, a LINAC is a set of drift tubes that have rf voltage applied so that the particles gets accelerated at the gaps; inside the cylindrical tubes they do not see any E field.

Alvarez Linac

Wideroe LINAC is the earlier type. As $v \rightarrow$ velocity of light, the Wideroe LINAC becomes very inefficient. So the Alvarez type became prevalent.

Synchronous condition for LINACs is


$$L = \frac{1}{2} v T_{rf}$$
 v= velocity of the particle
Trf= rf period

Fermilab: Old LINAC up to 200 MeV and currently up to 116MeV with Alvarez type accelerator

ᅷ

Disk-loaded Wave Guide Accelerators

A wave guide is a pipe of conducting material where an oscillating electromagnetic field can be established.

But, we know that

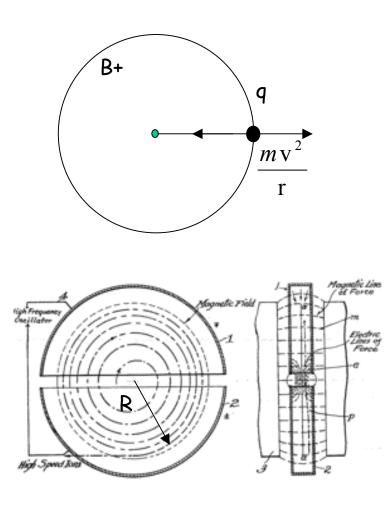
 $v_{particle}v_{Phase} = c^2$ and $v_{particle} < c$ To accelerate we must have phase velocity to be equal to particle velocity i.e.,

 $v_{particle} \approx v_{Phase}$

To achieve this condition we add metallic disks so that phase velocity can be reduced.

For the structure shown here, we can show that the gain in kinetic energy for

 $V(t) = V_0 \cos(\omega t)$ is $\Delta E = eV_0 T_t$


 T_{t} is called "transit time factor". The disk-loaded structure is not quite efficient for $v_{particle} \ll c$, but works well for $v_{particle} \approx c$.

Fermilab: 400 MeV side-coupled rf cavities

Circular Accelerators

Cyclotron: E. O. Lawrence and M.S. Livingston in 1931 (conventional cyclotrons) In the absence of an accelerating field, a charged particle follows a circular orbit in a constant magnetic field $\rightarrow \rightarrow \rightarrow$

 $F = q \overrightarrow{v} \times \overrightarrow{B}$ $= \frac{mv^2}{r}$ $\therefore \quad \frac{v}{r} = \omega = \frac{qB}{m}$

since v and B are perpendicular to one another vxB=vB

At non-relativistic speeds ω is independent of particle velocity. Now, if a "D" shaped rf cavity is introduced and make the cavity voltage oscillate with an AC voltage, then, one can accelerate the particle by rf voltage and confine it in the magnetic field till it hits the extraction orbit R.

The gain in KE is
$$KE = \frac{p^2}{2m} = \frac{mv^2}{2} = \frac{1}{2}m \left[\frac{q^2}{m}\right]B^2 R^2$$

In practice, the maximum energy attained by this type of circular accelerator is about 22 MeV for deuterons

Synchro-cyclotron: McMillan (USA) and Veksler (USSR) in 1945

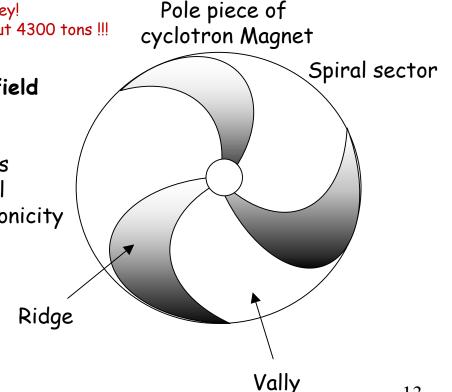
At relativistic speeds, ω is not independent of velocity of the particle, i.e.,

$$\omega = \frac{\mathbf{v}}{r} = \frac{qB}{m_0 \gamma} \text{ where } \gamma = \left[1 - \frac{\mathbf{v}^2}{c^2}\right]^{-\frac{1}{2}} \implies f_{rf} \sim \frac{1}{\gamma(t)}$$

Therefore, one can keep synchronicity in a cyclotron by changing ω so that $\omega m_0 \gamma = constant$. This is the principle of synchro-cyclotron.

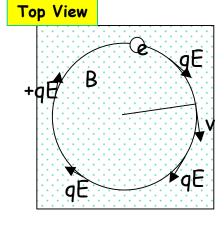
The particle energy at any time is obtained by

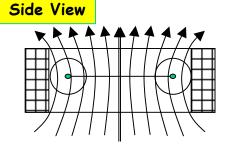
$$1/r = qB/pc$$
 with $pc = \sqrt{E_{kin}(E_{kin} + 2m_0c^2)} = qBr$


Proof of principle Synchro-cyclotron: 37 in. cyclotron at Berkeley! Emax achieved = 350MeV. Rmax=184 in, Magnet Weighed about 4300 tons !!!

Isochronous-Cyclotron (azimuthally-varying-field cyclotrons- AVF cyclotrons):

Thomas from Ohio State Univ, 1938, In the above equation the angular velocity ω has radial dependence. So by introducing the radial dependence in the magnetic field B, the synchronicity can be maintained, i.e,


$$\omega = \frac{qB(r(t))}{m_0\gamma(t)}$$


Examples: TRIUMF, IUCF, MSU, VEC etc. 500MeV

Betatron: Kerst, University of Illinois, Urbana , 1941

Time-varying magnetic field induces electric field around a closed loop (Faraday's law of induction). This is the principle behind the "Betatron"

$$\frac{d\phi}{dt} = -\int_{L} \vec{E \bullet} d\vec{l}$$

The magnetic field keeps the charged particles in a circular orbit and the varying magnetic field induces particle acceleration.

If is the average magnetic field then the total flux is given by, $\phi_{\!_B} = \pi r^2 < B >$

$$\therefore \int_{L} \overrightarrow{E} \bullet dt = 2\pi r E = \pi r^2 \frac{d < B >}{dt} \quad \text{or} \quad E = \frac{r}{2} \frac{d < B >}{dt}$$

This changing magnetic field imparts force on the charge q=e

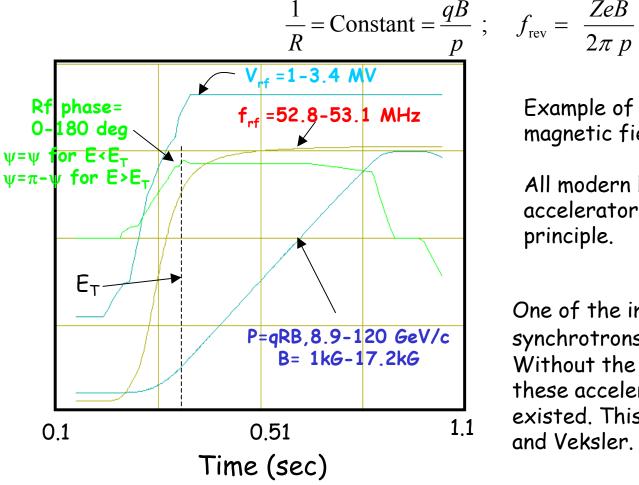
$$F = \frac{dp}{dt} = qE = \frac{qr}{2}\frac{d < B >}{dt}$$
. Integrating with $t: \Delta p = \frac{qr}{2}\Delta < B >$

Further at radius r

$$p = qB_{\text{Orbit}}r \Longrightarrow \Delta p = qr\Delta B_{\text{Orbit}}$$

Comparing the above two identities we get

$$\Delta < B >= 2\Delta B_{\text{Orbit}}$$

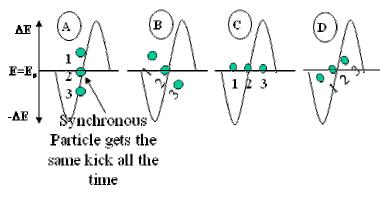

This is called "Wideroe $\frac{1}{2}$ condition"

There are >200 betatrons commercially used around the world.

Synchrotrons

The circular accelerators which make use of both synchronously varying rf field (amplitude and frequency) and magnetic field are called synchrotrons.

Example of a synchronously varying magnetic field and rf frequency.


All modern high energy circular accelerators operate on similar principle.

One of the important features of synchrotrons is **phase focusing**. Without the discovery of phase focusing these accelerators would not have existed. This credit goes to McMillan and Veksler.

*

Phase Focusing

The particle that gains exactly the "designed" or "nominal" energy during acceleration process is called "*synchronous particle*".

Let us assume a sinusoidal accelerating voltage on the rf cavity in a circular accelerator. Let the three particles arrive at the accelerating gap as shown in Fig.A. Then all particles get same acceleration kick as shown (which is zero). Consequently, next time particle "1" arrives at the rf gap earlier than the rest and gets negative kick relative to "2"; "3" gets positive kick relative to "2". After this passage, the ($\Delta E, \phi$) picture looks like as in Fig.B. And, so on.

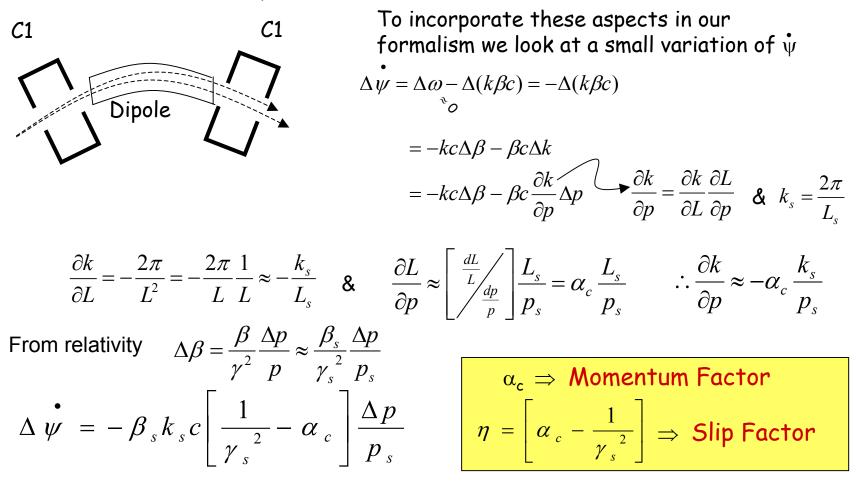
On the whole, all particles below certain $\pm \Delta E$ "phase focusing" get the same kick and hence form a bunch.

This feature is vital to beam acceleration in an accelerator "phase stability"

Synchronicity condition and Harmonic Number:

Let
$$qE = qE_0 e^{-i\psi_s} = qE_0 e^{-i(\omega t - ks)}$$

Synchronicity condition demands that synchronous angle=constant
 $\Rightarrow \psi_s = \frac{d}{dt}(\omega t - ks) = \omega - k\frac{ds}{dt} = \omega - k\beta c = 0$ \therefore Synchronicity condition is $k = \frac{2\pi}{L}$


or $\omega = k\beta c = \frac{2\pi}{L}\beta c = \frac{2\pi}{L}h\beta c = \frac{2\pi}{\Delta T}h$ h= harmonic number ΔT is time of traversal between C1 and C2

Momentum Compaction Factor:

In reality we have to consider following two important factors

- 1. k changes as energy increases (synchronicity condition demands k to change)
- 2. Need to apply corrections to path length for off-momentum particles. This is quite obvious if there is a dipole between C1 and C2

Transition Energy: $\eta = \left[\alpha_c - \frac{1}{\gamma_0^2}\right] \Rightarrow \left[\frac{1}{\gamma_T^2} - \frac{1}{\gamma_0^2}\right]$ Phase Jump MI 8-120 GeV ramp 0.004 $\pi - \Psi_{S}$ Ψ_{s} 0.002 0 -0.002 eta Transition Energy -0.004 -0.006 Accelerating rf wave -0.008 -0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 Time (sec)

The momentum compaction factor is an important aspect of rf acceleration. Further, this is an inherent feature of transverse and longitudinal beam dynamics in accelerator physics

Vacuum

The particle have to be transported or accelerator in very high vacuum. The typical vacuum is,

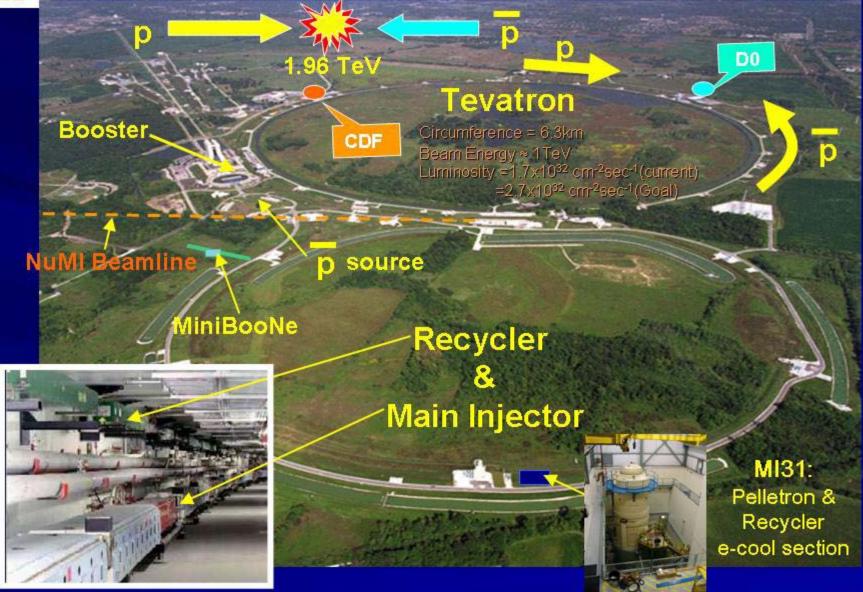
- a. For transfer lines vacuum ~ 10^{-7} torr (torr = 1/760 atm *exactly*)
- b. For a low intensity rapid cycling accelerators a vacuum of $10^{\text{-7}}$ to $10^{\text{-8}}$ torr may be good.
- c. For high intensity we need better than 10⁻⁸ torr
- d. For beam storage rings vacuum > 10⁻⁹ torr

*

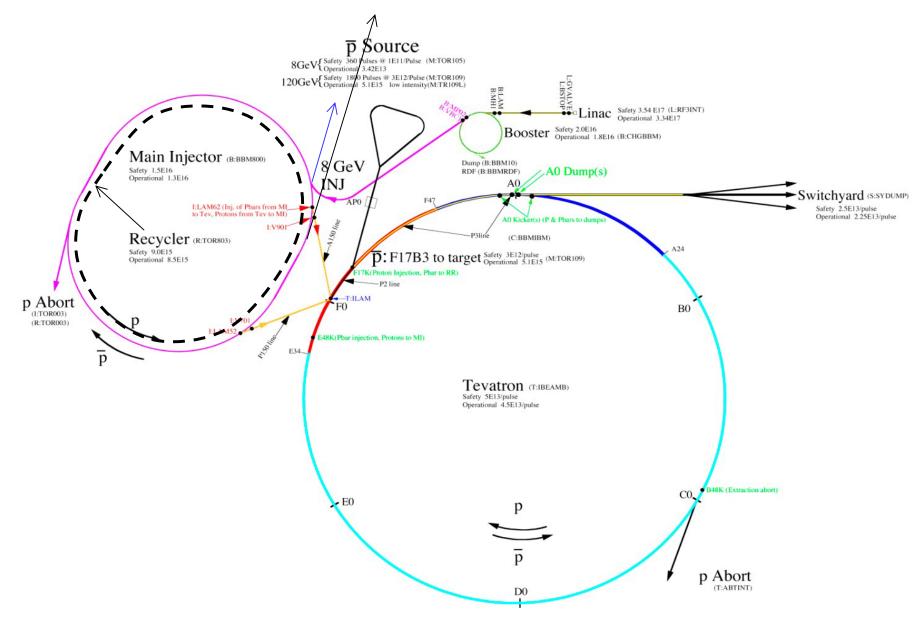
An Example of A High Energy Accelerator Complex

Fermilab has six synchrotrons & four types of LINAC

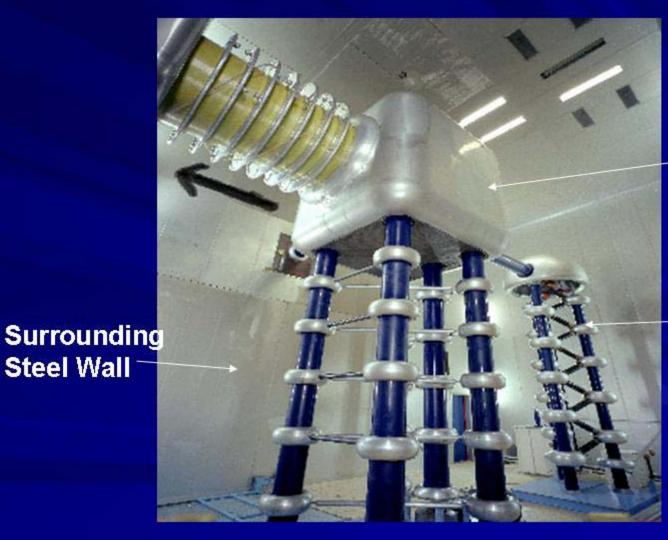
<u>Linear Accelerators</u>


Circular Machines

2- Cockcroft-Walton: 0-750KeV Alvarez LINAC : 750keV - 116 MeV 200MHz Disk-loaded side coupled cavity LINAC: 116 MeV- 400MeV 802MHz Pelletron: 4.3 MeV electron accelerator for beam cooling


Booster (accelerator): Energy: 400 MeV - 8 GeV, rf frequency: 37.7-52.82MHz, Dipole magnetic field: 0.67 kG-6.3kG Debuncher (electromagnet storage ring): Energy: 8 GeV, rf frequency: 52.82MHz, Dipole magnetic field: 17kG Accumulator (electromagnet storage ring): Energy: 8 GeV, rf frequency: 52.82MHz, Dipole magnetic field: 16.98kG (1.689 Tesla) Recycler Ring (permanent magnet storage ring): Energy: 8 GeV, Wide band rf system, Dipole magnetic field: 1.33kG and 1.375kG Main Injector (accelerator as well as decelerator): Energy: 8 -150 GeV, rf frequency: 52.82-53.3 MHz, Dipole magnetic field: 1kG-17.2kG Tevatron (accelerator as well as decelerator): Energy: 150 GeV-1 TeV, rf frequency: 53.3 MHz, Dipole magnetic field: 0.66 Tesla-4.4 Tesla

World's Pre-eminent HEP Laboratory



Steel Wall

Cockcroft-Walton Accelerator

Dome containing the **H-source**

Capacitors

1928

3

Inside the Dome

H gas cylinder

A magnetron creates the H- ions and sends them on to their first major acceleration 4^{4}

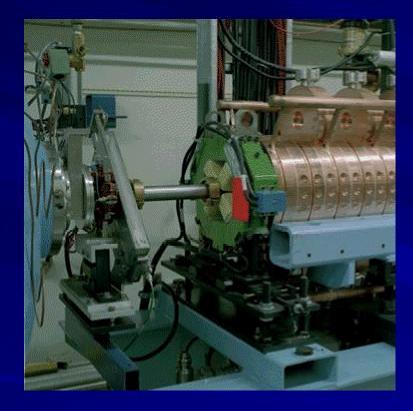
Beam injection point to LINAC

Injection point to Linac

Pre-bunching cavity

First Alvarez LINAC tank 5

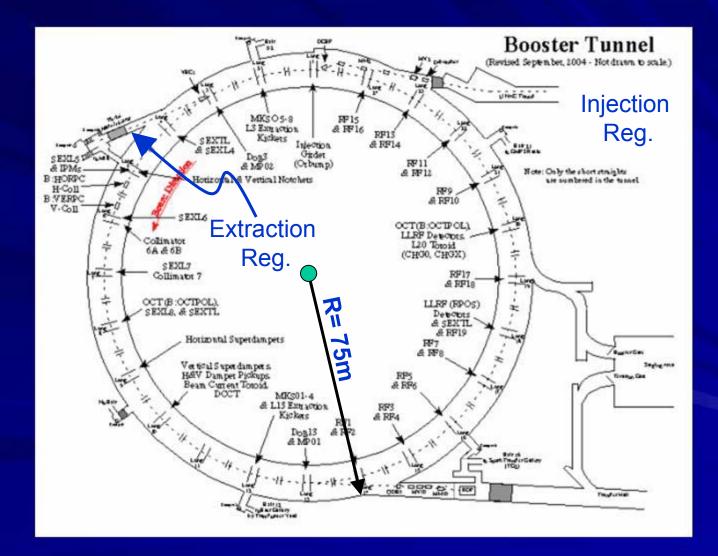
Alvarez Linac (201MHz) (Vrf ??)



Accelerating Modules

Accelerating Structure inside

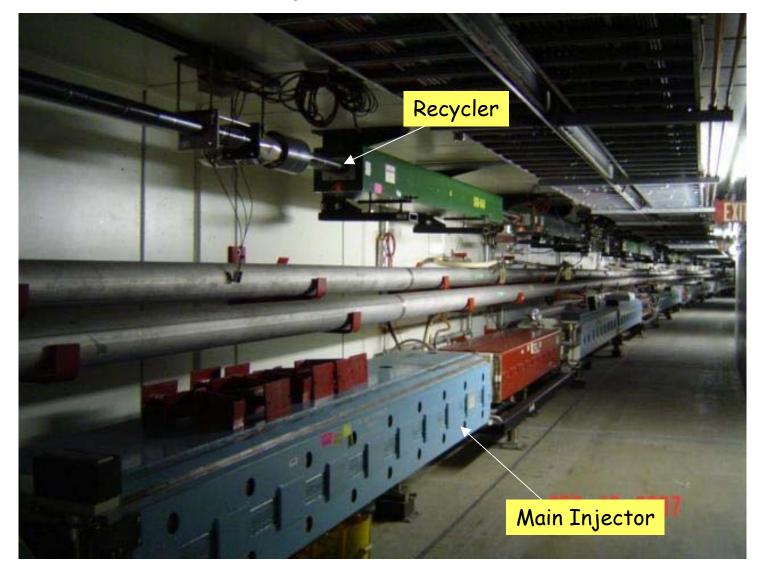
Disk-Loaded Side-Coupled Linac


Aerial View showing Fermilab Booster

Booster Machine Parameters

	Circumference	2π x 74.47 meters
	Injection energy	400 Mev (kinetic)
	Extraction energy	.8 Gev (kinetic)
I	Cycle time	1/15 sec
	Harmonic number, h	84
I	Transition gamma	5.45
I		37.77 Mhz _ RF frequency Change
I	Extraction Frequency	52.81 Mhz \int during beam acceleration
	Maximaum RF voltage	0.86 MV
	Longitudinal emittance	0.25 eV sec
	Horizontal β max	.33.7 meters
	Vertical β max2	20.5 meters
	Maximum dispersion	
	Tune $v\mathbf{x} = v\mathbf{y}$	
Compined	Transverse emittance(normailized))12π mm rad
Combined	Bend magnet length	2.9 meters
function Magnets	Standard cell length	.19.76 meters
I	Bend magnets per cell	4
	Bend magnets total	.96
	Typical bunch intensity	3 x 10e10
	Phase advance per cell	96 degs
	Cell typeFOFDOOI	D (DOODFOF)

Booster Lay out



8 GeV Booster

Booster Accelerating RF cavity Booster Magnet (combined function)

Main Injector and Recycler

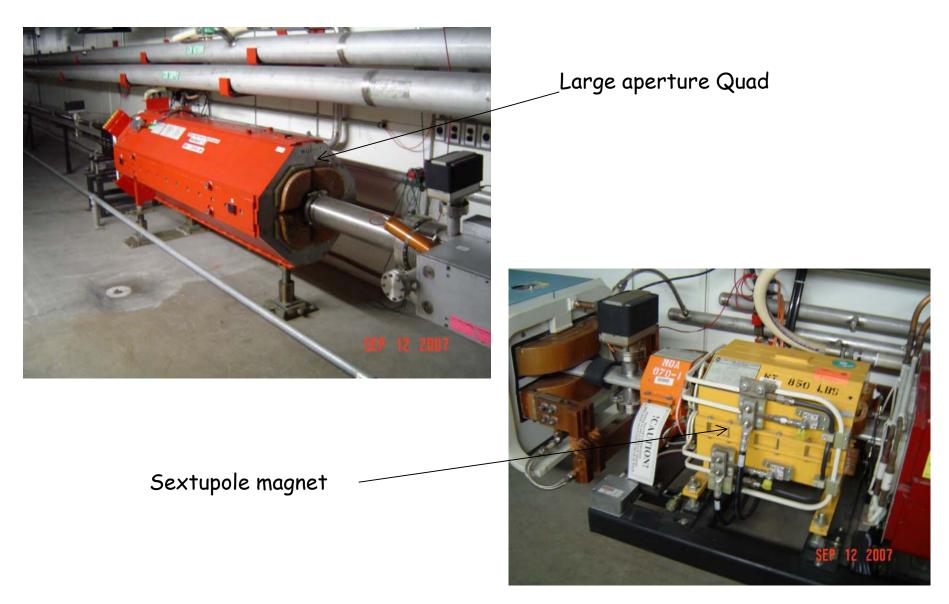
Main Injector Parameters

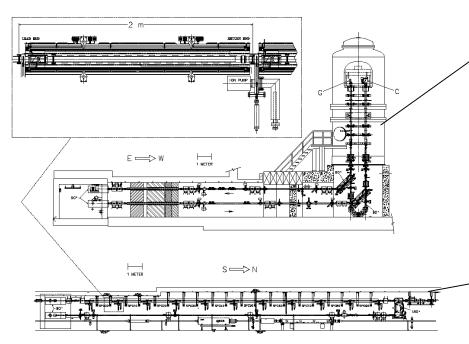
	Circumference	3319.419	m	Harmonic Number (@53 MHz)	588	
	Injection Momentum	8.9	GeV/c	RF Frequency (Injection)	52.8	MHz _
	Peak Momentum	150	GeV/c	RF Frequency (Extraction)	53.1	MHz _
	Minimum Cycle Time (@120 GeV)	< 1.5	S	RF Voltage	4	MV
	Minimum Cycle Time (@150 GeV)	2.4	S	Transition Gamma	21.8	
	Number of Protons	3 x 10 ¹³				
	Number of Bunches	498		Superperiodicity	2	
	Protons/Bunch	$6 \ge 10^{10}$		Number of Straight Sections	8	
		0 X 10		Length of Standard Cell	34.5772	m
	Max. Courant-Snyder			Length of Dispersion-Suppresser Ce	1 25.9330	m
	Amplitude Function (B _{max})	57	m	Number of Dipoles	216/128	
	Maximum Dispersion Function	1.9	m	Dipole Lengths	6.1/4.1	m
	Phase Advance per Cell	90	degrees	Dipole Field (@150 GeV)	17.2	kG
	Nominal Horizontal Tune	26.425		Dipole Field (@8.9 GeV)	1.0	kG
	Nominal Vertical Tune	25.415		Number of Quadrupoles	128/32/48	
	Natural Chromaticity (H)	-33.6		Quadrupole Lengths	2.13/2.54/2.95	m
	Natural Chromaticity (V)	-33.9		Quadrupole Gradient at 150 GeV	200	kG/m
_				Number of Quadrupole Busses	2	100,111
I	Transverse Admittance (@ 8.9 GeV)) > 40p	mm-mr	Transon of Quantup of Dubbob		
I	Longitudinal Admittance	> 0.5	eVs			
	Transverse Emittance (Normalized)	12p	mm-mr			
		-	eVs			
	Longitudinal Emittance	0.2	eVs			

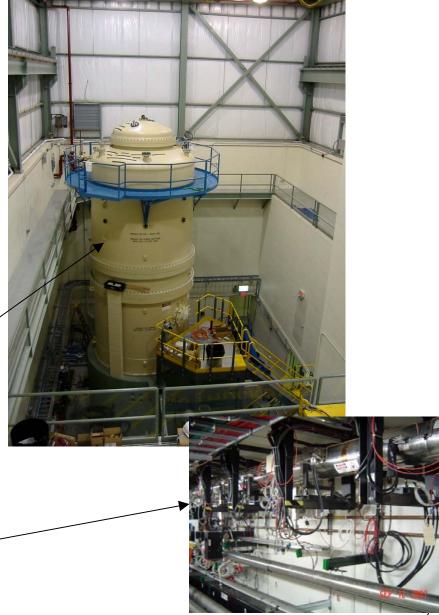
-

Main Injector RF section

Main Injector RF section





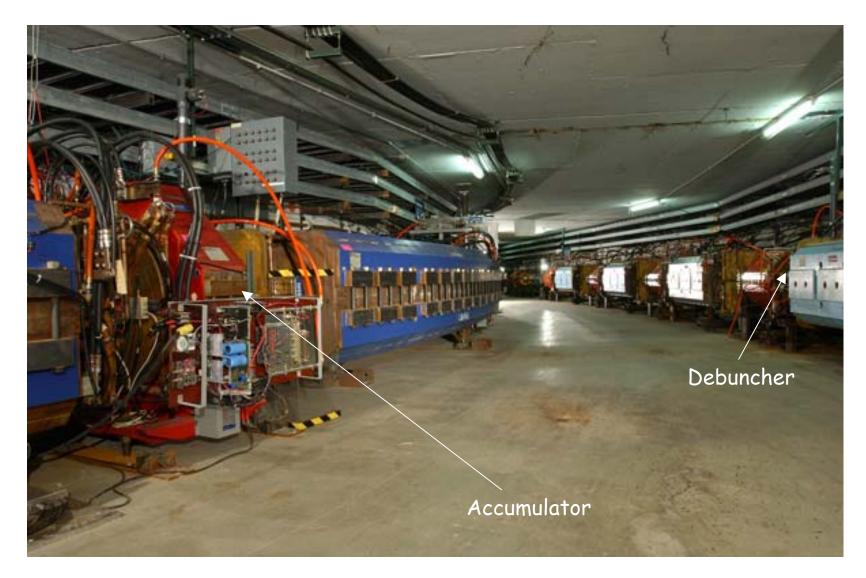

Example of Main Injector Magnets

Pelletron for antiproton cooling using e beam

- \triangleright Electron kinetic energy4.34 MeV \triangleright Absolute precision of energy $\leq 0.3 \%$ \triangleright Energy ripple $\leq 10^{-4}$ \triangleright Beam current0.5 A DC
- > Duty factor (averaged over 8 h) 95 %

Recycler Parameters (permanent magnet storage ring)

Circumference Momentum Number of Antiprotons	3319.400 8.889 2.5x10 ¹²	GeV/c	Superperiodicity Number of Straight Sections No. of Standard Cells in Straight Sections	2 8 s 18 54	
Maximum Beta Function	55	m	Number of Standard Cells in Arcs Number of Dispersion Suppression Cells		
Maximum Dispersion Function	2.0	m	Length of Standard Cells	34.576 m	
Horizontal Phase Advance per Cell	86.8	degrees	Length of Dispersion Suppression Cells	25.933 m	
Vertical Phase Advance per Cell	79.3	degrees	· · ·		
Nominal Horizontal Tune	25.425		Number of Gradient Magnets	108/108/128	
Nominal Vertical Tune	24.415		Magnetic Length of Gradient Magnets	4.267/4.267/2.8	345m
Nominal Horizontal Chromaticity	-2		Bend Field of Gradient Magnets	1.45/1.45/1.45	kG
Nominal Vertical Chromaticity	-2		Quadrupole Field of Gradient Magnets	3.6/-3.6/7.1	kG/m
Transition Gamma	20.7		Sextupole Field of Gradient Magnets	3.3/-5.9/0	kG/m ²
			Number of Lattice Quadrupoles	72	
Transverse Admittance	40	$\pi\mathrm{mmmr}$	Magnetic Length of Quadrupoles	0.5	m
Fractional Momentum Aperture	1%		Strength of Quadrupoles	30	kG/m

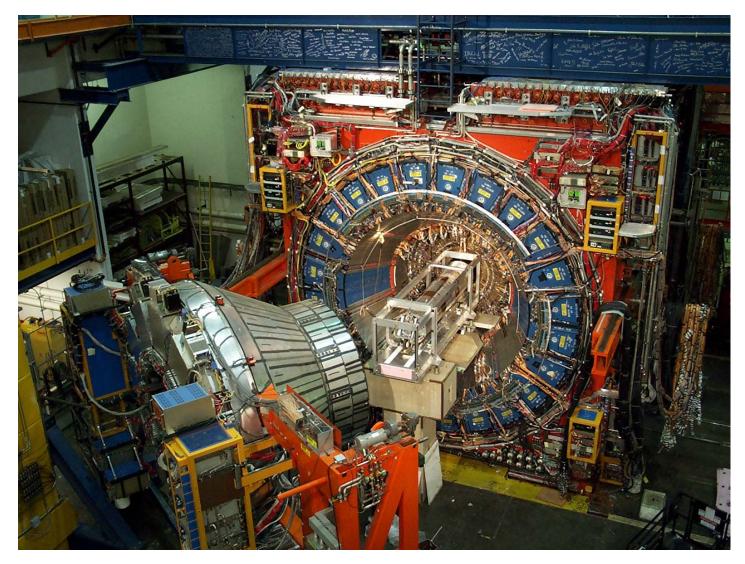

Uses Combined function Magnets Barrier RF system Electron cooling and Stochastic cooling

Antiproton Source

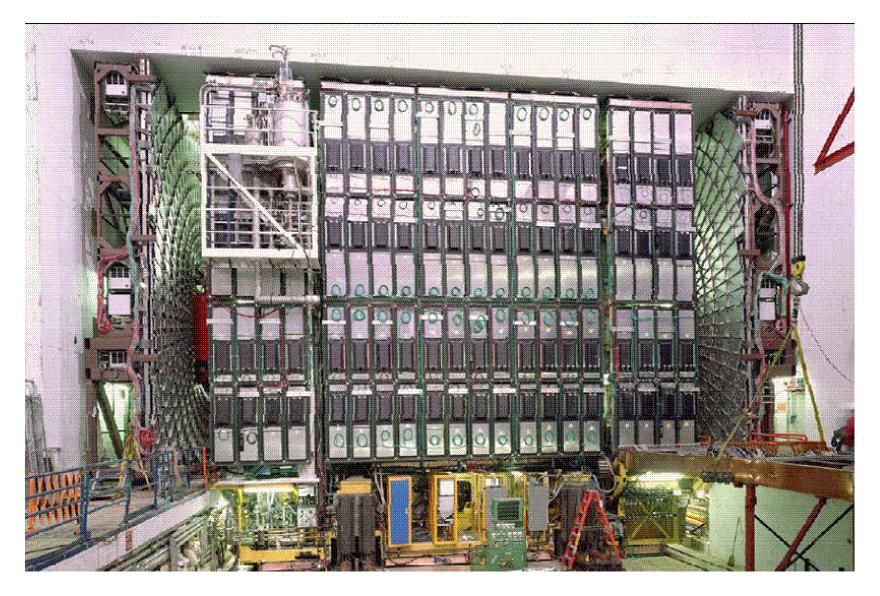
Accumulator and Debuncher rings

Tevatron Tunnel

Tevatron Parameters


	TEVATRON (Fermilab)
Physics start date	1987
Physics end date	
Particles collided	$p\overline{p}$
Maximum beam energy (TeV)	0.980
Luminosity $(10^{30} \text{ cm}^{-2}\text{s}^{-1})$	171
Time between collisions (ns)	396
Crossing angle (μ rad)	0
Energy spread (units 10^{-3})	0.14
Bunch length (cm)	$p; 50 \\ \tilde{p}; 45$
Beam radius (10 ⁻⁶ m)	$p: 29 \\ \tilde{p}: 21$
Free space at interaction point (m)	± 6.5
Luminosity lifetime (hr)	7 (average, start of store)
Filling time (min)	30
Acceleration period (s)	86
Injection energy (TeV)	0.15
Transverse emittance $(10^{-9}\pi \text{ rad-m})$	p: 3 $\bar{p}: 1.5$
β^* , ampl. function at interaction point (m)	0.28

Beam-beam tune shift	p: 50
per crossing (units 10^{-4})	\tilde{p} : 100
RF frequency (MHz)	53
Particles per bunch (units 10 ¹⁰)	p: 24 p: 6
Bunches per ring per species	36
Average beam current per species (mA)	$p; 66 \\ \hat{p}; 16$
Circumference (km)	6.28
Interaction regions	2 high ${\mathscr L}$
Utility insertions	4
Magnetic length of dipole (m)	6.12
Length of standard cell (m)	59.5
Phase advance per cell (deg)	67.8
Dipoles in ring	774
Quadrupoles in ring	216
Magnet type	s.c. $\cos \theta$ warm iron
Peak magnetic field (T)	4.4
\overline{p} source accum. rate (hr ⁻¹)	$16{ imes}10^{10}$
Max. no. \overline{p} in accum. ring	$2.4{ imes}10^{12}$



CDF Collider Detector

The DØ Detector

