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Lecture 2
Aspects of Transverse Beam 

Dynamics
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Accelerator and Beamline Magnets
Dipole Magnet:  Dipole magnet is a device used to bend  the path of charged 
particles during beam transport. The radius of curvature of a charged particle in a 
constant magnetic field perpendicular to its path is,
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Quadrupole Magnet: A device used to focus charged 
particle beam during beam transport.  

But the total bending field  Bφ is given by,
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Then,

Quad strength

Let us see what is the relationship between focal length, f, and the 
quadrupole strength. Fig. A shows bending of a charged particle in a 
magnetic field perpendicular to the plane of the paper and “B”
shows optical analogue of focusing. Then the deflection angle,  
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A conventional quadrupole magnet used in synchrotrons 
has four iron poles with hyperbolic contours. 
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The quadrupole magnets provide material free aperture and 
focusing. 

Quadrupole Field 
Configuration

Focusing

Defocusing
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Optics

Field free region

Interesting features: 
The horizontal force component depends only on the 
horizontal position of the particle trajectory. Similarly 
for the vertical axis.
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f1= focal length of 1st quad
f2= focal length of 2nd quad
L = separation between two quads

Linear Machine: Contains only dipoles and quadrupoles.  
In these machines the horizontal and vertical motions 
are “completely decoupled”
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A single “quad” can provide focusing only in one plane 
because of the magnetic field configuration. Hence, one 
needs at least two consecutive quadrupole magnets to 
get overall focusing of all charged particles.
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Sextupole Magnet:  These are used for chromatic corrections 
during beam transport, storing or beam acceleration.
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xMultipole Field Expansion: General 
multipole field expansion is given by,

The momentum-independent sextupole strength is given by, 
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The sextupole magnets generate non-linear magnetic field 
and introduce horizontal and vertical motion of the beam

In an un-coupled case, 
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Dipole    Quadrupole  Sextupole contributions

(Vertical bending  field)

(Horizontal bending  field)
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Beam Transport and FODO Lattice

A beam transport comprises of magnetic elements that form a lattice which guides the 
charged particle beam from  one point  to another.  Such a beam generally traverses 
through a vacuum beam pipe. 
Lattice may be for 

– Beam transfer line
– Circular beam storage ring or accelerator
– Linear accelerator

FODO Lattice:
A lattice comprising symmetric quadrupole triplets that 
can focus beam in both X and Y planes  or
a lattice comprising of Focusing-Drift-Defocusing-Drift 
with quad strengths.  

1/2QF 1/2QFQD

FODO Period

k(s)

Nomenclature
Symmetric FODO

1/2QF 1/2QFQD

QF QD

k(s)

NomenclatureBeamline and Circular Machine:
FODO lattice can be repeated as many times as needed 
to form a beamline or a circular machine.  

Dipole
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So far we have assumed that the trajectory of the path of any 
particle in a beam is always perpendicular to the dipole magnetic 
field in a circular accelerator. Suppose a particle has a vertical 
angle ≠ 0. Then the particle follows a spiral path and gets lost. 
Therefore we need an additional  focusing force to keep the 
particle stable.  

Weak Focusing Accelerators 
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For any other particle the restoring force is given by,  

To keep the beam particle focused one needs the gradient component in the magnetic 
field.  
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Then one can show that if 0<n<1 (“Steenbeck’s criterion”) 
particle can be focused in both x and y planes and beam 
can be made stable. 
A circular accelerator with this stability criterion is 
called a “Weak Focusing Accelerator”
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Weak Focusing Accelerators (cont.) 
An optical analogue of weak focusing accelerator is shown here 
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Strong Focusing Accelerators 

1  and  1 >>−<< nn

The circular accelerators with  magnetic 
field gradients 

used alternatively also provide very high 
stability to the beam. These are called 
“Strong Focusing Accelerators”

Christofilos (1950)
Courant, Livingston and Snyder (1952)

Optical analogue of such an accelerator with the 
combination of focusing and de-focusing quads  
isshown in Fig. B . 
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Alternating gradient focusing

Combination of focusing and de-focusing 
quads shown in Fig. B  with f1=-f2 will give  
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Earlier strong focusing accelerators are 
built with combined function magnets. 
Recent strong focusing accelerators used 
separated function magnets; 
• Dipoles for bending
• Quads for focusing
• Sextupoles for chromatic corrections 

CERN PS n≈±288

Fermilab Booster n=165, -207

Fermilab Recycler n=620, -598

Closed Orbit for the strong focusing lattice

Accelerators with combined 
function magnets
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∴This  is a moving coordinate system with
x, y – deviation of particle  trajectory from reference 

orbit at the point of interest “O* ”
s – tangential vector at “O* ”
σ - individual particle trajectory. 

This will be our coordinate system in the rest of our analysis 

Coordinate System
We use an orthogonal right handed coordinate system 
(y,x,s) that follows the reference orbit particle. 

Reference orbit
(Center of the beam)
Or Ideal orbit
Or Design orbit

ρ
X

Y
σs

Trajectory of 
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Hill’s Equation:
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From this picture, 

σ Part. Traj. The equation of motion is going to be with respect to the 
reference orbit. 
Note that in the deflection plane 

Horizontal Plane
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Small angle 
approximation
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The term          in the above equation describes the “weak focusing” of a bending 
magnet. In a large accelerator this term can be neglected.

We get the equation of motion as,









+−=

00

111''
ρρρ
xx

For the monochromatic beam with momentum p0, the curvature of the charged particle 
in an electromagnetic field is given by,
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Thus, the equation of motion in horizontal plane becomes
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Similarly in vertical plane
Notice that this equation a) has not got dipole 
strength, b) change in sign 
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Momentum Dispersion:
In reality, the particles in a beam are not monochromatic.  Now let us  look at a 
particle that has a small momentum offset, i.e., 
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One can combine 
these two into one 
equation as,    ''
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Thus, the equations of motion become

These are equations of motion for “strong focusing” charged particle beam accelerators 
(and for the beam transport lines). This equation is called “Hill’s equation”. 

Notice that the magnitude of the focusing strength is a free parameter. 

Then the curvature is rewritten as, 

 usKu    )(''
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δ
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This has bending term 
ρ(s) and focusing term 
k(s).   K(s) is called spring 
constant
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Let us solve the simpler case of  Hill’s equations for a monochromatic beam., i.e.,  δ=0.

Solutions for the Equation of Motion (piecewise method)









=
















=









0

0

0

0

'')(')('
)()(

)('
)(

u
u

M
u
u

sSsC
sSsC

su
su

)sinh(1)(  &  )cosh()(:0For   

)sin(1)(  &  )cos()(:0For   

sK
K

sSsKsCK

sK
K

sSsKsCK

==<

==>

 usKu    0)('' =+

The principal solution to this equation (assuming K is a constant) are, 

which are linearly independent. “C”= cosine like function and “S”= sine like function. 
They satisfy initial conditions at s= 0 
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Any arbitrary solution can be written as a linear combination of C and S 

0

0

'u
uwith as arbitrary initial coordinates 

of the particle trajectory

In matrix form this is written as,

The determinant =CS’-C’S and its derivative, CS’’+C’S’-C’S’-CS’’=CS’’-C”S=0 are 
independent of s
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For the initial conditions of s=0 , the 2x2 matrix becomes,

Solutions for the Equation of Motion (cont.)
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Further, with negligible dissipating forces we find that, for any arbitrary beamline, the 
determinant 

unit matrix
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det ==
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M

Remark: There are some cases where  the above determinant ≠1. This means there 
might be some accelerating/decelerating or quantum effect to be taken into account.  

damping-Anti    1                
Damping    1det  If

>
<M
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B: Pure defocusing quadrupole:                            . Set 

A: Pure focusing quadrupole:                              .    Set lsk =>=    ,0   ,01

0ρ

Here we deal with some commonly used accelerator components
Transformation Matrices for the Accelerator Components
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D: Quadrupole Doublet:                            
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Transformation Matrices (cont.)
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E: FODO cell - (Focusing+Drift+Defocusing+Drift)

FODO cell  - symmetric quadrupole triplets                            

k(s)

Symmetric FODO

1/2QF 1/2QFQD

k(s)

Symmetric FODO
k(s)k(s)

Symmetric FODO

1/2QF 1/2QFQD

QF QD

k(s)

Nomenclature

QF QD

k(s)

Nomenclature

We make the following point which is critical for beamline or accelerator design.

These transformation matrices enable us to follow a charged particle  through a transport 
line/accelerator made of an arbitrary number of drift spaces, quadrupoles and bending 
magnets.  Thus, the final transfer matrix for any system looks  like,  

11...MMMM nn −=

If the sequence of elementary matrices represent components all around a circular 
accelerator, then we can use this matrix to investigate stability of transverse 
oscillations.
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Stability criterion
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must remain finite for an arbitrary value of n.  M is the matrix for one turn or 
repetition period.  Then it can be shown that, the stability criterion can be met if, 

We demand that in a synchrotron  or transport line the spacing between lenses  and 
strength of the these lenses should provide stable oscillations for passage of a 
charged particle beam. This implies the stability criterion is  the quantity, 

For FODO lattice (symmetric  triplets or otherwise) the stability criterion will be 
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Betatron Oscillations:
Now we can sketch oscillations of a particle 
traversing through a lattice described  
above. These oscillations are called 
betatron oscillations
Also, note that the particles do not have 
any slope  and are on axis do not exhibit the  
oscillations.

QF QFQD

Trajectory of an 
individual particle
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1. The quantity K is a function of s 
2. K is periodic for important class of accelerators, e.g., circular accelerators

3. Closely resembles  that for simple harmonic motion

The equation of motion                              has the following features,
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Solutions for the Equation of Motion (closed form)

)()(     sKCsK =+⇒ C is a repeat distance or “super-period”

Then the general solution of such an equation can be given by 

)])(cos[)()( δψ += sswAsu Quantities independent of s

w(s) is a periodic function with periodicity “C”

By substituting for u(s) in Eq. 22 we get, 

Equating the sine term to zero

∫
+

=∆=+→
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s
c ds

sw
CCss
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1)( 200 ψψ

; C1 is an arbitrary constant of integration  

Thus, the phase of the oscillation of particle advances according to 

Because w(s) is periodic, this integral is 
independent of choice of s0
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Now we can express the transformation matrix M in terms of “A” and w(s). To do that, 
we rewrite the general solution as, 

Solutions (closed form) (cont.)

))(sin()(2))(cos()(1)( sswAsswAsu ψψ +=

Now we set the initial values of u and u’ at s=s0 with phase angle ψ = 0 and solve for A1 
and A2, which gives,  A1=u0/w and A2=(wu0’-u0w’)/C1. Then the transfer matrix in terms 
of phase advance ψ (s0+C)= ∆ψ looks like, 
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The functions α, β and γ are called “twiss” parameters or “Courant –Snyder” parameters
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The phase advance can be written as, (after setting C1= 1)
Tune of an accelerator- Solutions (closed form) (cont.)

    
)(

10

0

∫
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s
c ds

sβ
ψ

∫= ds
s)(

1
2
1

βπ
ν

])(cos[)()( δψβ += ssAsu

⇐=++ 222 ''2 Auuuu βαγ

is the local phase advance  

is  called the “tune” of the machine. 

In particular for a circular machine, the number of betatron oscillations per turn 

The general solution to the equation of motion 
becomes 

In this case one can show that  
Courant –Snyder invariant

is invariant at any point in the lattice. Notice that this is an equation of ellipse in 
(u,u’)-space with A2 as its area. Hence, we conclude that the phase-space enclosed by 
the particle is constant (if it is not accelerted). 
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In a circular machine, each time a particle passes a particular point in the ring its 
coordinates will appear as a point on the ellipse given by its amplitude and its slope at 
that point. Such a phase-space ellipse looks like,

Solutions (closed form) (cont.)

Emittance: The minimum phase space area which embeds all particles in a beam. ⇐ ε

because the twiss parameters change from point to 
point. But the area remains constant.

Admittance: This is the phase space area associated with the largest ellipse that the 
accelerator will accept. 
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2
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γ/2
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2
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γ/2
int Ax =

β/2
int Ax =′

αγ /−=slope

θθ
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u

u’ u
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We have two emittances in our study of transverse dynamics: horizontal and vertical 
emittances. 

Or, the area of the phase space ellipse spanned by  the largest 
amplitude particle in the beam.  

Notice that the orientation of the 
ellipse changes from location to 
location through the lattice
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A Few Remarks on Emittance and RMS Emittance

In reality, the transverse emittance of a beam as defined earlier, is of limited merit 
because it may become very large if one includes all beam particles. For example for 
a Gaussian beam the emittance becomes infinite. This problem can be reduced by 
quoting the emittance of a certain fraction of the beam, e.g. 90%, yielding ε90%.

One may use the rms emittance that averages over all particles with a weight given by 
the distance  of the particles from the “center”:

This is the semi-axis-product of an ellipse. For a Gaussian distribution, the ellipse 
contains 39% of the beam. (ε90% = 4.6⋅ ε rms)
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At Fermilab, we use ε95% = 6⋅ ε rms.
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In term of twiss parameters the trajectory of a particle can be described by, 

Transverse Beam Dynamics in Terms of Betatron Functions  

β
ψ

ψββ
1'

')0(',)0(  and 0  ,0at    , 000

=

===== uuuusNow setting 

))(sin()(2))(cos()(1)( ssAssAsu ψβψβ +=

and with                   the transformation in terms of twiss parameters will be,

The ψ is the phase advance from s=0 to s=s. In general, this can be for any s1 s2.
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All particles in the beam with emittance ε follow the trajectory given by,

Here the quantity δi is an arbitrary phase constant for the particle i.  Substituting 
this in Hill’s equation, and equating the cos(ψ+δi) term to zero, we get, 

)])(cos[)()( isssu δψεβ +=

44'''2 22 =+− ββββ K

)(sεβ±It is important to note that            represents an envelope embedding all particles 
at a point in the lattice. 

The beam divergence is given by, 

)()( max susE εβ==

.0)(' =−=
β
εαsE

Wherever  α=0 the beam envelope E(s) has a local 
minimum, “waist”. At this point  
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β
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The quantity,

gives the maximum transverse size of the beam at any point in an accelerator or beam 
transport.  This is called “beam envelope”. 

Envelope and Envelope-Equations
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With some mathematical rearrangements, one can write 
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This plays very significant role in designing beamlines, accelerators and beam injection 
and extraction regions.
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βγ

ε

βγ is relativistic factor . The above equation is called KV-envelope equation. This plays 
very important role in understanding beam transport of space-charge dominated beam in 
accelerators such as high intensity Photo-injector.  

called the “envelope equation”.

If we take into account the Coulomb mean field due to all particles in the beam the 
above equation will takes the following form, 

; electron characteristic current

Envelope-Equations (Cont.)
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This represents the particle beam with emittance ε at s=s0=0. Then the transformation 
matrix as s≠ 0 is given by, 

Let us take the initial conditions as u=u0, u’=u’0 and A=ε. Then the Courant –Snyder 
invariant  becomes, 

Transformation of Twiss Parameters
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Solving these equations for u0 and u’0 and inserting them in  Eq. A we get, 
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Or in matrix form the transformation of twiss parameters can be written as 
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The initial set of twiss parameters will be established from the parameters of injection 
region and the rest can be evaluated using the above transformation matrix. 
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Schematic of the beam in FODO lattice
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FODO lattice, Twiss parameters, Envelope 
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