Joint Accelerator School - 08 RRCAT, Indore January 14, 2008

High Temperature Superconducting ECR Ion Source (HTS-ECRIS)

D. Kanjilal IUAC, New Delhi 110067

Principle of Electron Cyclotron Resonance Ion Source (ECRIS)

Electron cyclotron resonance:

An electron in a static and uniform magnetic field will move in a circle due to the Lorentz force. The circular motion may be superimposed with a uniform axial motion, resulting in a helix, or with a uniform motion perpendicular to the field, e.g., in the presence of an electrical field, resulting in movement along a cycloid. The angular frequency ($\omega = 2\pi f$) of this *cyclotron* motion for a given magnetic field strength *B* is given (in SI units) by

$$\omega_{ce} = \frac{eB}{m}$$

where *e* is the elementary charge and *m* is the mass of the electron. For the commonly used microwave frequency 2.45 GHz and the bare electron charge and mass, the resonance condition is met when B = 875 G = 0.0875 T.

Comparison of charge states available from PIGIS and ECRIS

Ref: Electron Cyclotron Resonance Ion Sources and ECR Plasmas by R Geller

HTS-ECR Ion Source PKDELIS

HTS-ECRIS on a high voltage platform

VARIOUS CHOICES FOR COOLING

• Use liquid helium to cool the coils and let it evaporate to atmosphere.

• Recover evaporated helium gas and return this in compressed form.

2. Operation of a cryogenic system on a high voltage platform is extremely complicated costly and

HTS-ECRIS based High Current Injector for LINAC

Low Temperature Superconductor Onnes (1911) Resistance of Mercury falls suddenly below meas. accuracy at very low (4.2) temperature

1987: J. Georg Bednorz, K. Alex Müller

Discovery of high-temperature superconductivity in a new class of ceramic oxides

2003: Anthony Leggett, Vitaly Ginzburg and Alexei Abrikosov

VARIOUS CHOICES FOR MATERIALS

- BSCCO 2223 (T_c ~ 110 K)
- BSCCO 2212 (T_c ~ 85 K)
- YBCO ($T_c \sim 90 \text{ K}$)

• MgB₂ is a low temperature superconductor (LTS) with critical temperature ~39 K (almost highest possible by current theories).

Of these only BSCCO2212 and BSCCO2223 (1st generation HTS) are now available in sufficient quantities to make accelerator or beam line magnets.

However, the future may lie with YBCO (2nd generation HTS) which, in principle, can be produced at a much lower cost (less Ag). Recent results from industry on 2nd generation HTS are encouraging.

Schematic of ECR Ion Source

Comparison of simulated and test axial field profiles

Cross-section view of cylindrically symmetric hexapolar Halbach Structure. The arrows denote the direction of magnetisation. VACODYM 633HR, $T_{max} = 110$ °C, 36 sectors Halbach type, ID = 35 mm, OD = 80

VACODYM633HR Cycle = 2

Radial field contours of the hexapole

Radial field profile of the hexapole

Bi-2223 High Strength Reinforced Tape

Ref: American Superconductors Inc., USA

Ref: American Superconductor Inc., USA

Gifford McMahon Cryo-Cooler

Cold current leads	0.2 W
Radiation and internal coil heating	5.7 W
Supports	0.9 W
Contingency (20%)	4.6 W
Total	27.4 W

Coil cryostat

Testing of modulated vanes of RFQ

HV Platform with ECRIS, TP, Gas system, UHF Transmitter etc

TWT Amplifier, ECRIS on HV Deck followed by Accelerating Tube

LEIBF

MIVOC (Metal Lons using Volatile Compounds) technique:

A new system developed for extracting metal ions using MIVOC technique.

It is used for extracting

-Fe beam using ferrocene compound $[Fe(C_5H_5)_2]$ which has a vapor pressure of 1.7 x 10⁻³ torr at 20^oC and

-Si beam extracted using chlorotrimethylsilane [$Si(CH_3)_3 Cl$]. Metal (As, Ge, Zn and Au) beams were developed using the micro-oven

Various atomic physics and materials science runs are are carried out using various beams.

Two operational beam lines of LEIBF

Experimental Facilities in 90 degree Beam Line

Number of Research Groups ~ 50

Ion – Micro-Droplet interaction Experimental System in 15 degree Beam line

Rev. of Scientific Instruments 75, 5094 (2004).

Ion-solid interactions

An energetic ion transfers its energy via two processes:

Electronic (inelastic) energy loss (S_e) and Nuclear (elastic) energy loss (S_n) :

Dominant for swift heavy ion irradiation

Dominant for low energy ion implantation

$$S_{e} = -\left(\frac{dE}{dx}\right)_{e} = \frac{4\pi e^{4}Z_{p}^{2}Z_{I}N_{I}}{m_{e}v^{2}}\left[\ln\left(\frac{2m_{e}v^{2}}{I}\right) - \ln\left(1 - \frac{v^{2}}{c^{2}}\right) - \frac{v^{2}}{c^{2}}\right]$$

$$S_{n} = -\left(\frac{dE}{dx}\right)_{n} = N\frac{\tilde{d}^{2}}{2}Z_{1}Z_{2}e^{2}a\frac{M_{1}}{M_{1}+M_{2}}$$

Bohr-Bethe formula

For screened Coulomb potential

Stopping and Ranges of lons in Matter (SRIM) calculations:

The deposited energy depends on mass and energy of projectile and on mass of target

Final structure of damage depends on the type of material, temperature, ion flux etc.

Number of displacements versus depth can be given using **Kinchen-Pease** relation:

$$n_d = \frac{0.8\nu(E,x)}{2E_d}$$

Vacancies produced by nuclear energy loss

Field vectors on the yoke cross section

Radial magnetic field on the coil surface

Source Body with HTS coils

HTS Coil with Cryotip

Axial field measurements

Various Stages of Development

Closer view of the HTS-ECR source with cryoptips on top

View of Plasma generated in the ECR source

LargeAcceptanceanalysingmagnetforPKDELIS ECR source

Design goal: High acceptance, moderate mass resolution, minimum weight, air cooled

Optics code used: TRANSPORT, COSY INFINITY and GIOS

Design parameters:

- Maximum Field (Bmax.) = 0.3 T
- Bending radius (r) = 0.3 m
- Bending Angle $= 90^{\circ}$
- Pole gap = 80 mm

- Entrance and exit pole shape = cylindrical
- Radius of curvature of cylinder = -0.24 ± 0.01 m
- Entrance and exit anglePole profile
 - Entrance and exit = Rogowski Side pole profile = Champhered Eight be accessed as $P(x) = D(1 + x (x/x) + x (x/x)^2 + x (x/x)^2)$
- Field homogeniety B(x) = B₀(1+n₁(x/r) +n₂(x/r)² + n₃(x/r)³ +...)

$$n_1 = 0, n_2 = -0.70 \pm 0.07, n_3 = +0.9 \pm 0.09$$

 $= 32.8^{\circ} \pm 0.5^{\circ}$

Test Results :

Parameters	Specification	s Model	Measured
shim angle 0.34	32.8 ± 0.5	32.0	31.7 ±
(degree) EFB radius 2.0	24.0 ± 1.0	25	25.5 ±
n1	0	0	0
n2	-0.7 ± 0.07	-0.694± 0.001	-0.67 ± 0.07
n3	0.9 ± 0.09	0.873 ± 0.004	0.81± 0.15
n4	0	-0.032 ± 0.046	-0.41± 2.49

HTS- ECRIS PKDELIS and Large Apperture Analyzing magnet at NSC

HYPERNANOGAN 📫 PKDELIS

 $B_{axial} = 1.8 T$ $\mathbf{B}_{radial} = 1.37 \mathrm{T}$ Max required power = 20 kW ! Water cooling 200 l/h !

Ar Mass Analysed Spectrum

Xe Spectrum

Analyzeu beams nom nis-coris Prdelis

Beam	Q	Quoted Current	Obtained Current
12 C	2	2 mA	2.280 mA
16 O	2	2 mA	2.006 mA
20 Ne	2	2 mA	2.111 mA
20 Ne	3	1 mA	1.533 mA
40 Ar	4	1 mA	1.023 mA
40 Ar	8	600 µA	725 μΑ
129 Xe	14	150 μΑ	157 μΑ
129 Xe	21	20 µA	27 μΑ
180 Ta	20	30µA	65 µA
180 Ta	25	25 μΑ	26 µA
197 Au	21	15 μΑ	28 µA
197 Au	28	10 μΑ	19 µA
208 Pb	21	15 μΑ	66 µA
208 Pb	28	12 μΑ	18 µA

Ar $^{+8}$ @ 14.5 GHz = 540 μ A Ar $^{+8}$ @ 18 GHz = 725 μ A

&

Ar $^{+8}$ (405 μ A) @ 765 W Ar $^{+8}$ (317 μ A) @ 331W

Final Beam Test Results of PKDELIS ECR Ion Source

ION	A/Q = 6	A/Q = 7	A/Q = 8	A/Q = 9
¹² C	Q=2+, I > 2mAe			
¹⁶ O			Q=2+, I≥2mAe	
²⁰ Ne		Q=3+, I>1mAe		Q=2+, I≥2mA
⁴⁰ Ar	Q=7+, I≥600µA			Q=4+, I≥1mA
¹²⁹ Xe	Q=21+, l≥20µA			Q=14+,I≥150µ A
¹⁸⁰ Ta		Q=25+,26+, I≥25µA		Q=20+, I≥30µA
¹⁹⁷ Au		Q=28+, I≥10µA		Q=21+, I≥15µA
²⁰⁸ Pb		Q=29+, I≥12µA		Q=21+, I≥15µA

A: Atomic Mass Unit ; Q: Ion charge state

D. Kanjilal et al, Performance of First High Temperature Superconducting ECRIS,

Rev. Sci.Instrum., (2006)

Experimental Chamber

HTS-ECRIS

10 42

Analyzer Magnet (80mm aperture)

20/235/6/5

HTS-ECRIS with Experimental Chamber (Operation >22,000 hrs) Rev. Sci. Instr. (in press)

First HTS based ECR Ion Source in the World

BEAMS extracted from HTS-ECRIS PKDELIS

Ion	RF power	Beam current
	(Watts)	
²⁰ Ne ²⁺	391	2 mA
¹² C2 ⁺	380	2 mA
¹⁶ O ²⁺	410	2 mA
⁴⁰ Ar ⁸⁺	521	732 uA
¹²⁹ Xe ¹⁴⁺	615	158 uA
¹²⁹ Xe ²¹⁺	600	44 uA
$^{181}Ta^{20+}$	426	65 uA
$^{181}\mathrm{Ta}^{25+}$	476	27 uA
¹⁹⁷ Au ²¹⁺	786	38 uA
¹⁹⁷ Au ²⁷⁺	873	20 uA
²⁰⁸ Pb ²¹⁺	1200	99 uA
²⁰⁸ Pb ²⁸⁺	776	20 uA