Cryogenics Course Material : 3-4

#Introduction : What is Cryogenics and Why Cryogenics for accelerator , Present Scenario

How to Generate low Temperature / Production of Cryogen : Thermodynamics / Refrigeration Cycle

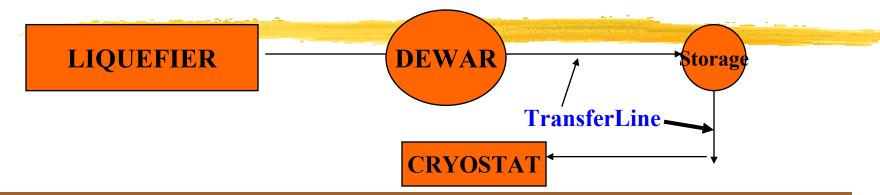
How to Store & Transfer Cryogen : Heat transfer, Cryomodule Design, Properties of Material :

Heasurement at Low temperature : T.S. Datta : JAS-08

RRCAT.Indore : January 7-18,2008

CRYOGEN STORAGE VESSEL, CRYOSTAT & Transfer Line

#INTRODUCTION


DIFFERENT MODES OF HEAT TRANSFER

%TECHNIQUE TO REDUCE IT (Cryogenic Insulation)

PROPERTIES OF MATERIAL AT LOW TEMPERATURE (**DESIGN FACTOR**)

RRCAT.Indore : January 7-18.2008

CRYOGEN CYCLE

STORAGE VESSEL : To Store liquid Nitrogen, liquid Helium, Liquefied Natural Gas (LNG) at their Boiling Point (Fixed T) Capacity : 5 litres to 500,000 litres

Transfer line : To Transfer Cryogen from one point to another

Cryostat : To Carry out Expt at low temperature (Variable T)

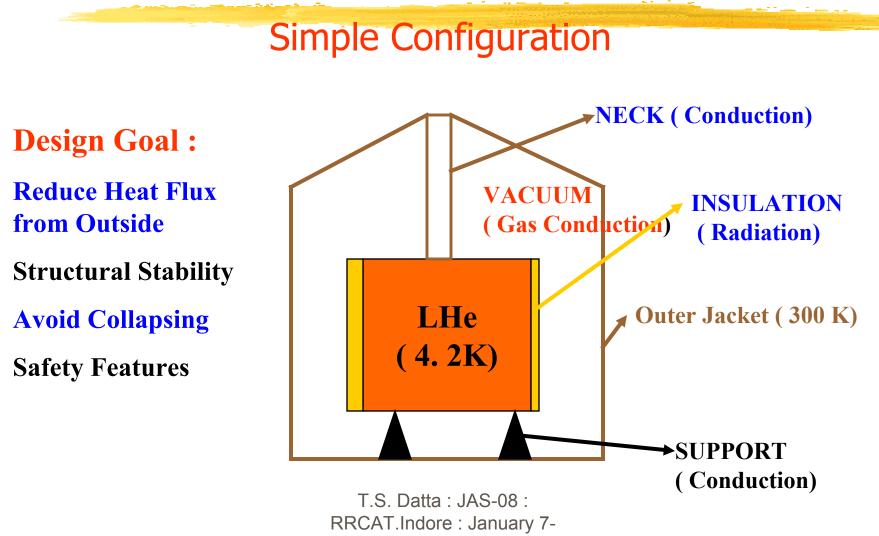
Both need good Insulation (Tr - Tb) Higher

WHY STORAGE IS SO CRITICAL

A. LOW LATENT HEAT

B. LARGE TEMPERATURE DIFFERENCE

Property	He	H 2	N 2	Water
Boiling Point	4.2K	20K	78K	373K
Density	0.12kg/liter	0.07kg/ litre	0.81kg/litre	1kg/litre
Heat of Vaporisation	20KJ/ kg	428	198	3 2250
Liquid evaporated on 100 W Heat input	140 l/ hr	12 l/hr	2.2 l/hr	0.16 l/hr


1 W HEAT LOAD EVAPORATES 34 LITRES Lhe in ONE DAY

THANKS TO MLI (MULTILAYER INSULATION TECHNOGY)

EVAPORATION RATE ONLYSI Dattries/09AY RRCAT.Indore : January 7-

18,2008

HEAT TRANFER TO CRYO VESSEL/ CRYOSTAT

18,2008

The 3 modes of heat transfer

Conduction: heat transported in solids or fluids at rest Q = k(T) A and T

$$Q = -k(T)A$$
 grad T

FOURIER's law:

Convection: heat transport produced by flow of fluid

$$\boldsymbol{Q} = \boldsymbol{h}\boldsymbol{A}(\boldsymbol{T}_w - \boldsymbol{T}_f)$$

Convection exchange:

Radiation: heat carried by electromagnetic radiation

Stefan-Boltzmann's law:
$$Q = \sigma \epsilon A (T_h^4 - T_c^4)$$

T.S. Datta : JAS-08 : RRCAT.Indore : January 7-18,2008

HEAT TRANSFER MECHANISM

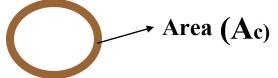
A. Solid conduction heat transfer : Necktube, Support structure.
B. Radiation heat transfer: Through vacuum
C. Gas conduction : Residual gas in the vacuum space.

Solid Conduction :

$$\mathbf{Q} = \mathbf{K} \quad (\mathbf{A} / \mathbf{L}) (\mathbf{T} - \mathbf{T})$$

A = Cross sectional area (example for a rod of dia (d), A = $\pi d^2/4$, c Similarly for a pipe of outer diameter d and thickness 't', A = πdt)

L = Length of rod/ pipe, T.S. Datta : JAS-08 : RRCAT.Indore : January 7-18,2008


Conductivity
$$k_m = F(T)$$
 $k = \begin{bmatrix} f & dT/(Th-T) \end{bmatrix}$
 m c
 $Q = (A/L) \int k dT.$
 c c

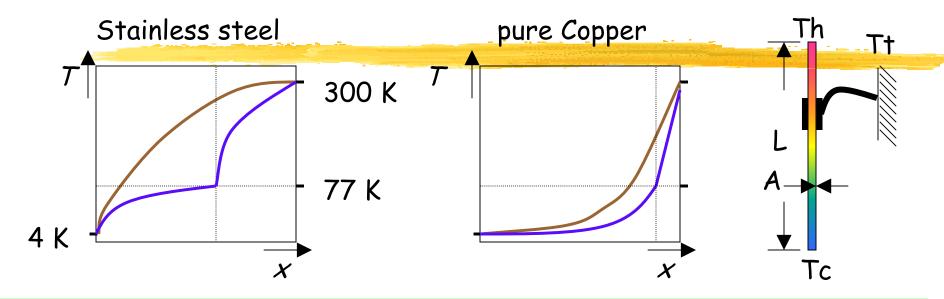
Cnductivity integral value of stainless steel between 300K and 80 K is evaluated by

$$\int_{80}^{4.2} \frac{4.2}{100} kdT = \int_{80}^{4.2} kdT - \int_{80}^{4.2} kdT = (30.6 - 3.49) = 26.1 W/ cm$$

T1 = 300
T2 = 4.2
CONDUCTION REDUCED BY;

- **1. Low Croosectional Area**
- 2. Long Length
- **3. Low conductivity pipe** (SS/FRP) S. Datta : JAS-08 :
- 4. Thermal interception RCAT.Indore : January 7-18,2008

Length (L)

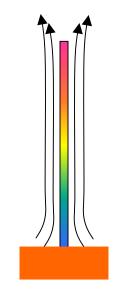

Thermal conductivity integrals

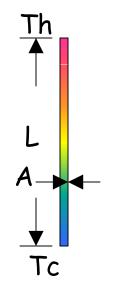
Tc=4 K	T ₂	ETP copper	Aluminium 1100	Austenitic stainless steel	Glass	PTFE
	[K]	[W cm ⁻¹]	[W cm ⁻¹]	[W cm ⁻¹]	[mW cm ⁻¹]	[mW cm ⁻¹]
	10	33.2	6.07	0.0293	6.81	4.4
	20	140	27.6	0.163	20.0	16.4
	30	278	59.2	0.424	36.8	32.3
	40	406	96.2	0.824	58.6	50.8
	50	508	134	1.35	84.6	71.6
	60	587	170	1.98	115	93.6
	70	651	202	2.70	151	116
	80	707	232	3.49	194	139
	90	756	258	4.36	240	163
	100	802	284	5.28	292	187
-	120	891	330	7.26	408	237
	140	976	376	9.39	542	287
	160	1060	420	11.7	694	338
	180	1140	464	14.1	858	390
1	200	1220	508	16.6	1030	442
	250	1420	618	23.4	1500	572
	300	1620	728	30.6	1990	702

Reduction of heat flow to the cold boundary temperature by thermal interception at intermediate temperature T.S. Datta : JAS-08 :

RRCAT.Indore : January 7-18,2008

Intermediate heat interception

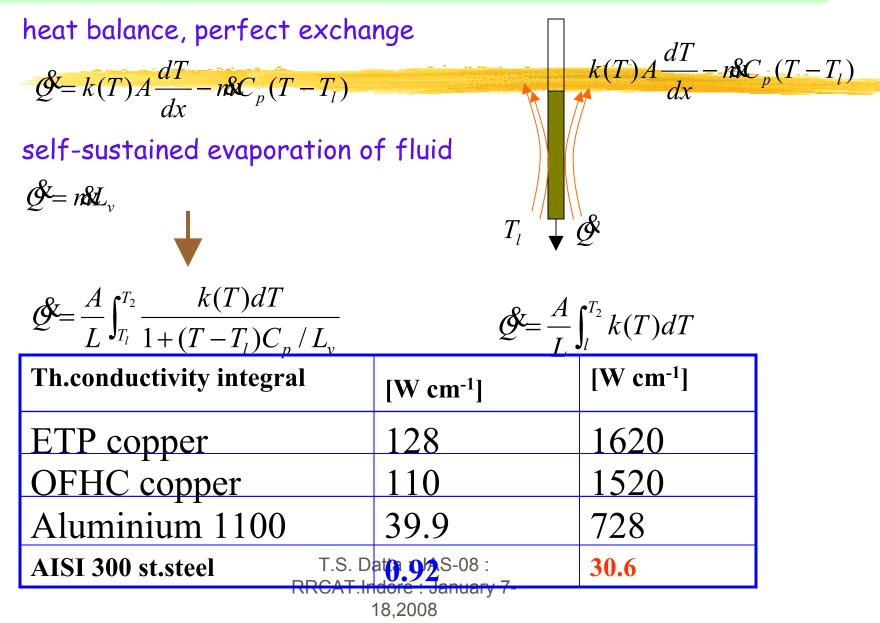

Example : SS tube Structure (2.54 Cm x 1mm x 1 m length) (300-4.2 K) No Thermal interception Q = 0.24 W (3.14 x 2.54 x.1 x 30.6/100) 80 K Thermal Interception at 70 Cm, Q = 0.04W (3.14 x 2.54x .1 x 3.49/70) 80 K Thermal Interception at 10 Cm , Q = 0.27W (3.14 x 2.54x .1 x 3.49/10)

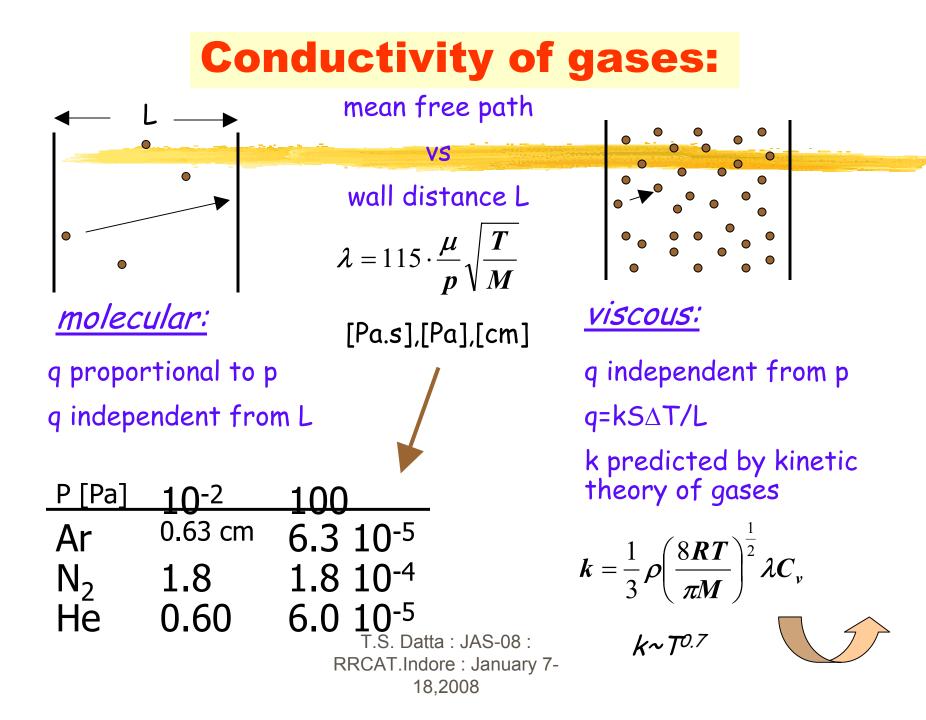

Refrigeration properties of cryogens

Working domain			He	N_2	H ₂ O
close to critical	Normal boiling Pt		4.2	77	373
point:	Critical temperature		5.2	126	647
properties of liquid and vapor	Critical pressure		2.3	34	221
phase are similar	Liquid density/ Vapor		7.4	175	1600
low vaporization heat Low viscosity	density* Heat of vaporization Ě iquid viscosity * Enthalpy increase between T ₁ and T ₂	[Jg ⁻¹] [µpoise] $T_1 = 4.2 K$ $T_2 = 77 K$	20.4 3.2 384	199 152 -	2260 283 -
hence excellent leaktightness required for He		$T_1 = 4.2 \text{ K}$ $T_2 = 300 \text{ K}$	1157	228	-
	*at normal boiling point T.S. Datta RRCAT.Indore 18,20	e: Jansuasytdined v	ctive for s	self- ling!	

Shielding potential of cold vapours

Pure conduction heat losses evacuated at the coldest temperature Self sustained vapour cooling: vapour flow generated only by heat leak is used to cool the device

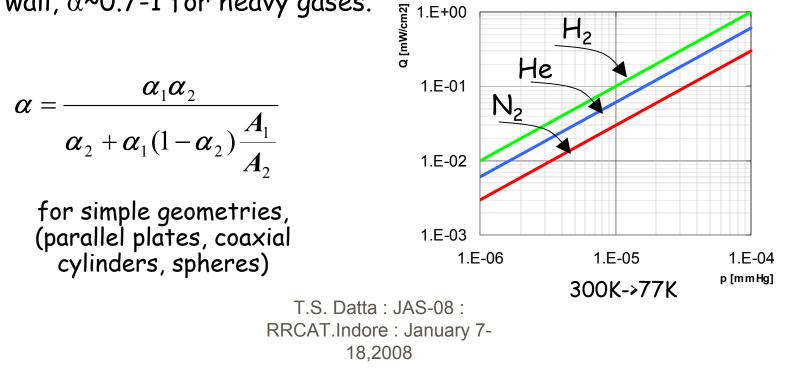



$$\mathcal{Q} = \frac{A}{L} \int_{T_1}^{T_2} k(T) dT$$

Heat evacuation across a small ∆T thermodynamically much more efficient

T.S. Datta : JAS-08 : RRCAT.Indore : January 7-18,2008

Shielding potential of cold vapours



Molecular regime: Kennard's law

$$\mathbf{\mathcal{P}} = A_1 \alpha \left(\frac{\gamma + 1}{\gamma - 1} \right) \left(\frac{\mathbf{R}}{8\pi} \right)^{1/2} \frac{\mathbf{p}}{\sqrt{MT}} \left(\mathbf{T}_2 - \mathbf{T}_1 \right)$$
 R ideal gas constant
 α accomodation coefficient

 $0 < \alpha < 1$, degree of thermal equilibrium between molecules and wall, $\alpha \sim 0.7$ -1 for heavy gases. $\mathbb{R}_{1.E+00}$

Residual gas conduction :

At lower pressure : Mean Free Path of the molecules >> ANNULAR GAP

$$Q = C \alpha P (T - T)$$

gc h c

 $C = constant, \alpha = accommodation coefficient, P = Gas pressure$

Residual gas conduction can be reduced 1. Clean surface (low \alpha) 2. by high vacuum.

Gas	С	α	P (Torr)	<i>T2/T1</i>	$Qgc (W/m^2)$
Air	0.02	0.8	10 ⁻⁵	300/78	0.35
Air	0.02	0.8	10-5	78/4.2	0.11
Air	0.02	0.8	10 ⁻³	300/78	35
Helium	0.03	0.35	10-5	300/4.2	0.31
Helium	0.03	0.35 T.S. Datta	10 ⁻⁵ JAS-08 :	78/4.2	0.07

18,2008

RADIATION

Heat transfer between 2 real surfaces

$$\mathbf{\varphi} = \boldsymbol{\sigma} A_1 \boldsymbol{\varepsilon}_{12} \left(\boldsymbol{T}_2^4 - \boldsymbol{T}_1^4 \right) \qquad \boldsymbol{\varepsilon}_{12} \qquad \begin{array}{c} \text{effective emissivity} \\ \text{(emissivities + view factor)} \end{array}$$

Parallel plates	$\frac{\boldsymbol{\varepsilon}_{1}\boldsymbol{\varepsilon}_{2}}{\boldsymbol{\varepsilon}_{2}+(1-\boldsymbol{\varepsilon}_{2})\boldsymbol{\varepsilon}_{1}}$
Spheres and long cylinders self-contained, not	$\frac{\boldsymbol{\varepsilon}_{1}\boldsymbol{\varepsilon}_{2}}{\boldsymbol{\varepsilon}_{2}+\frac{\boldsymbol{A}_{1}}{\boldsymbol{A}_{2}}(1-\boldsymbol{\varepsilon}_{2})\boldsymbol{\varepsilon}_{1}}$
concentrical/coaxial	$A_2 $ A_2

(A1<A2)

 $A_2 >> A_1$ equivalent to A_2 black: black-body radiation fills the cavity between the two surfaces and is collected by A_1 proportionnally to ε_1 RRCAT.Indore : January 7-18,2008 **Radiation** :

For vacuum insulation, the dominant contribution to heat inleak into a storage vessel or cryostat is Radiation

Radiant heat transfer rate between two parallal surfaces

$$Q = Fe F \sigma A (T^{4} - T^{4})$$

r 1-2 1 2 1

Fe = Effective emmissivity, $F = Geometry \ factor = 1, \ \sigma = Stefen$ Boltzman constant = 5.6 x 10 -⁸ w/m² K. A = Surface area of inner vessel. 1

1/F = 1/e + A / A (1/e -1), e: emmissivity for inner and outer surface. e 1 1 2 RRCAT.Indore : January 7-18,2008

Radiation Heat transfer is reduced by :

1. Intermediate thermal shield

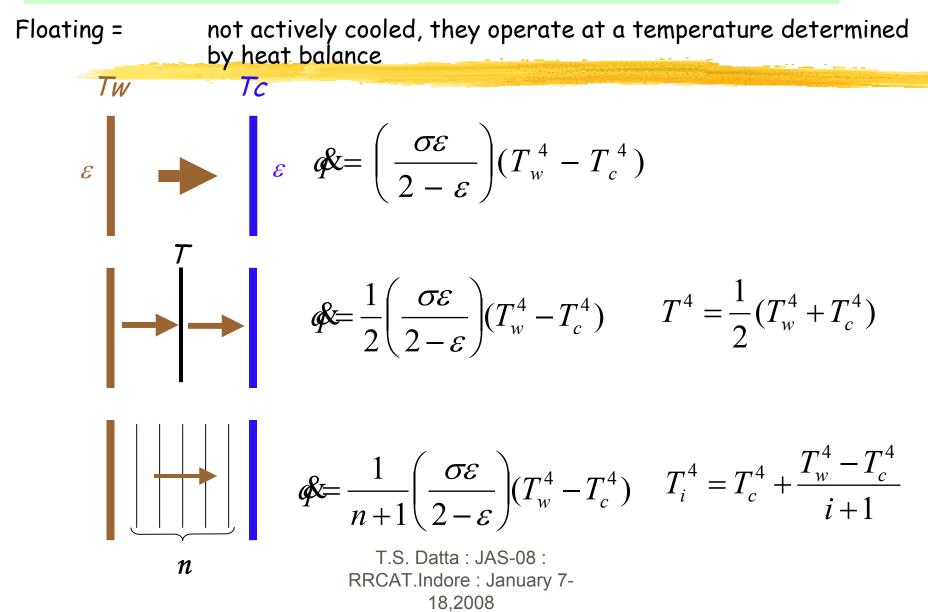
Liquid helium/ hydrogen vessel : liquid nitrogen cooled shield

heat transfer reduction : by a factor of $200 \sim (300/80)^4$

- 2. Material of low emmisivity : by electropolishing or aluminum tape.
 - SS : 0. 34, SS (Mech. Polished) : 0.12, SS (Elec. Polish : 0.1
 - SS + Al Foil: 0.056, Copper: 0.12: Careful on Oxide formation

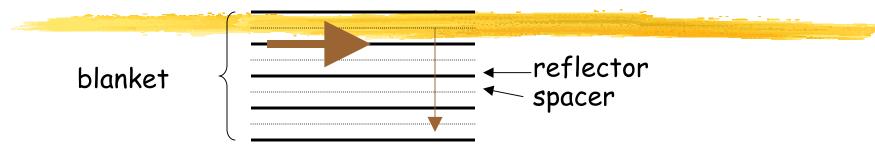
3. Optimizing the surface area for a fixed volume.

Ť.S. Datťa : JAS-08 : RRCAT.Indore : January 7-18,2008


Heat Transfer for Vacuum Insulation on bare Polished SS surface (Radiation)

T (K)	T (K)	Heat flux (W/ m ²)	Evaporation rate (l/hr)
300	78	45	1 litre/hr liquid Nitrogen
200	78	9	0.2 litre/hr
300	20	45	5 litres/ hr liquid Hydrogen
80	20	0.23	0.026 litre/hr
300	4.2	45	65 litres/hr liquid Helium
80	4.2	0.23	0.33 litres/hr

Standard Helium Dewar of 100 litres : Evaporation < 1 litres/ day


T.S. Datta : JAS-08 : RRCAT.Indore : January 7-18,2008

Floating radiation screens

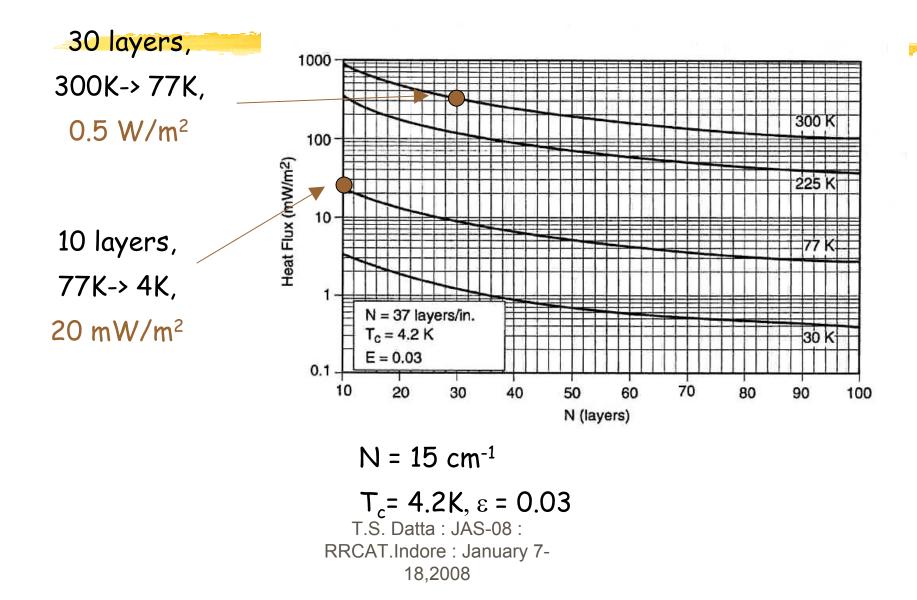
Multi-layer Insulation

Stacking of "reflectors" separated by insulating "spacers"

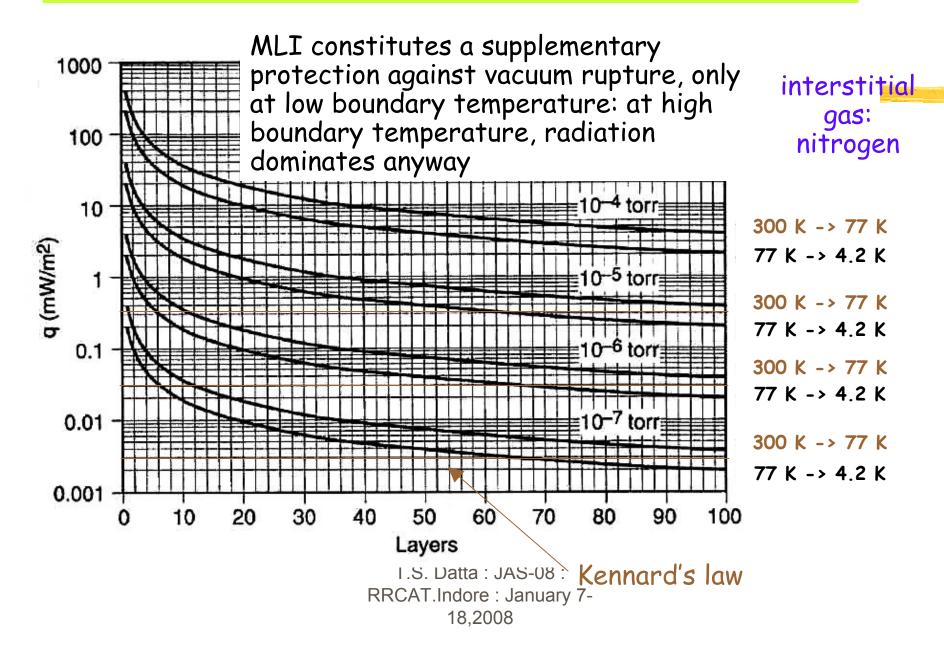
<u>Reflector:</u> low emittance radiation shield polyester film, 300-400 A pure Al coating, usually double face

<u>Spacer:</u> insulating, lightweight material

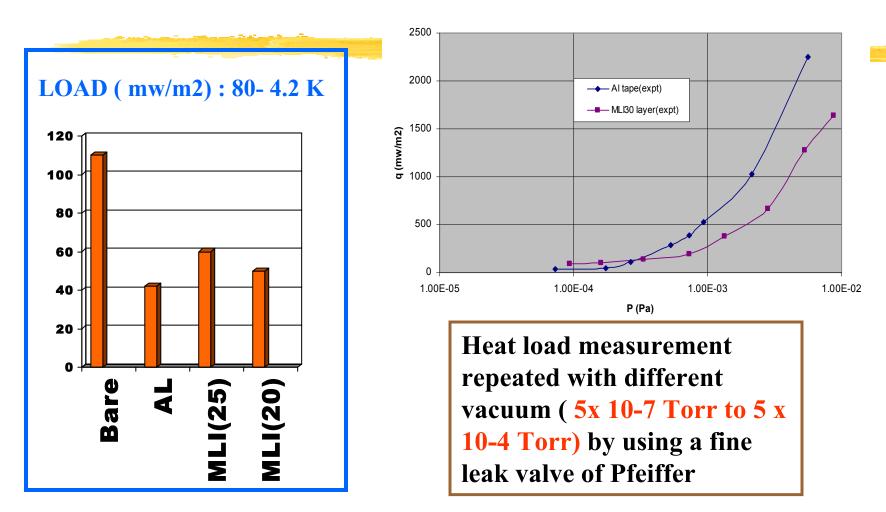
paper, silk, polyester net


1. Heat transfer parallel to the layers ~1000 times greater than normal to the layers

thermal coupling between blanket edges and construction elements may dominate heat rate.


2. Heat transfer very sensitive to layer density

single local compression affects the T profile over the entire blanket, substantially degradating heat loss (factors 2-3 more !) RRCAT.Indore : January 7-


MLI: number of layers

MLI and residual pressure

Performance Comparison of Al tape and MLI w.r.t Vacuum (80-4.2 K)

Conclusion : Performance of Altape is better than MLI if Vacuum is better than 3^TX^{1nd} ^{CP} 6^{Ja}Tuary⁷⁻

Multilayer Insulation (MLI)

I.S. Datta : JAS-08 : RRCAT.Indore : January 7-18,2008

CRYOGENIC INSULATION

A. FOAM INSULATION (POLYSTYRENE, POLY URETHENE (PUF)

Aparant thermal Conductivity : 20 - 35 mw/m.K

B. POWDER : (Evacuated Perlite Powder)

Aparant Thermal Conductivity : 1-2 mw/m.K

No radiation.

C. VACUUM ALONE (Only Radiation)

Ka : 5mw/m. K at 10 -6 torr

C. MLI (MULTILAYER) : Highly reflective Film with low conductivity spacer)

Ka = .002 - .005 mw/m.K

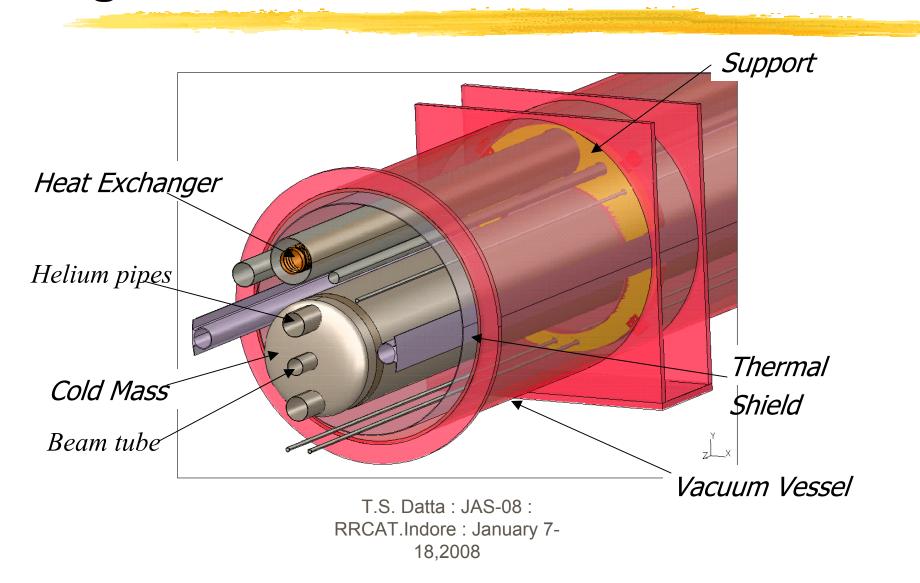
All heat transfer is Minimised. DattaQJAS=0&: e A $(T^{4}-T^{4})/2$ (N +1) RRCAT.Indore : January 7-1 1 2 1 18,2008

Typical heat inleaks in a cryostat

...between flat plates, at vanishingly low temperature

	$[W/m^2]$
Black-body radiation from 290 K	400
Black-body radiation from 80 K	2.3
Residual gas conduction (100mPa helium) from 290 K	19
Residual gas conduction (1mPa helium) from 290 K	0.19
Multi-layer insulation (30 layers) from 290 K, pressure below 1mPa	0.5-1.5
Multi-layer insulation (10 layers) from 80 K, pressure below 1mPa	0.05
Multi-layer insulation (10 layers) from 80 K, residual pressure 100mPa	0.2

Residual Gas conduction (100mPa) from 80 K	6.8
Residual gas conduction (RtmRa) direomandary K	0.07
18,2008	


A. Thermal Conductivity Integrals of common material

4.2 К То	80 K	300K	
OFHC Copper	600 w/cm	1600	
AISI 304 SS	3.49	30.6	
G - 10	0.18	1.53	

B: Emissivity of Technical materials

	300- 77K	77- 4.2K
SS as found	0.34	0.12
SS Mech polished	0.12	0.07
SS Electropolished	0.10	0.07
SS+ Al foil	0.05	0.01
Al Mech polished	0.10	0.06
Copper, Mech polished	T.S. Datta : JAS-08 : P.O.AT.Indore : January 7-	0.02
	18,2008	

A superconducting accelerator magnet

A superconducting magnet built by Fermilab for LHC at CERN in Geneva, Switzerland

Consists of layers from cold inside to warm outside -magnet, inner pipes, thermal insulation, steel vacuum container

RRCAT.Indore : January 7-18,2008

Summary of Heat Load Budget For Accelerator Cryomodule/ Distribution line

Input Parameters :1. **Total length of Module (Meter)**

- 2. Surface area per unit length (M2/M)
- 3. Weight of Cold Mass/ m length
- 4. Dynamic Load : Rf power, Magnet

Whether we Need intermediate thermal shield ?

- 1. Option one (No) : 30 layers of MLI, $Q = 2 \times 1.5 = 3W$
- 2. 80 K Shield (No MLI) : $Q = 2 \times .15 = 0.3$ (one order less)

3. Same with one layers Al Foil $q = 2 \times .02 = 0.04 \text{ W}$

Vacuum Level ?

10 -5 mbar Qg = 2x .07 = 0.15 W

10-3 mbar, $Qg = 2 \times 7 = 14 W$ (not acceptable)

RRCAT.Indore : January 7-

Heat load Budget-2

We have Seen 80 K shield + 1 layers Al Foil and Vacuum better than 10- 5 mbar, Load from Radiation and gas conduction per m length

Qg+ Qr = .03 + 0.15 = 0.19 W Same with vacuum 10-3 mbar, Q = 15 W

If we wrap with 10 layers of MLI

Q = 4 W (Stiil higher but better than 15 W)

Generally Vacuum is better than 10-6 mbar unless there is a leak : This further reduces the heat load

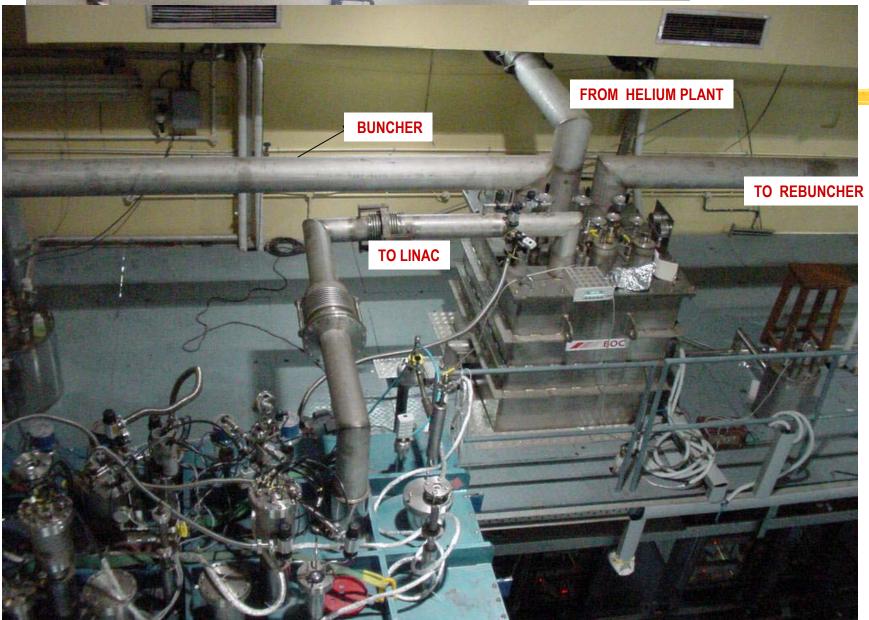
Conclusion : 80 K Shield + 10 layers MLI + vacuum better than 10-5 T.S. Datta : JAS-08 :

What About Conduction load ?

Heat load Budget-3

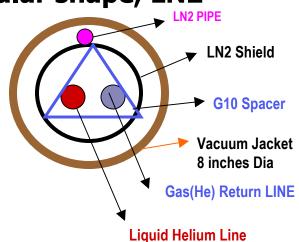
Once we know the weight, we can easily calculate the Cross sectional Area Required for the load either in Compression or Tension mode

Two alternatives 1. SS 2. G 10 Thermal Interception (80 K) is required or not


	SS	G-10
KdT (: 300- 4.2)	30.6 W/cm	1.53
KdT (80- 4.2)	3.49	0.18

Yield strength for both is almost same , so Cross sectional area remains same

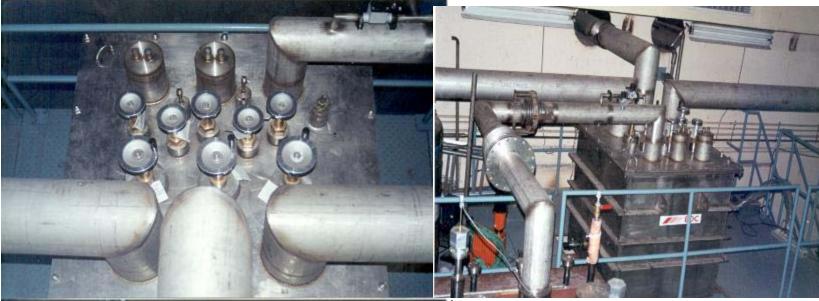
G-10 is even better without thermal interception than SS with 80 K thermal interception


G-10 Difficulty on Fabrication at Cascade better and case to case RRCAT.Indore : January 7-

LIQUID HELIUM DISTRIBUTION NETWORK

Specification of Lhe Distribution Network

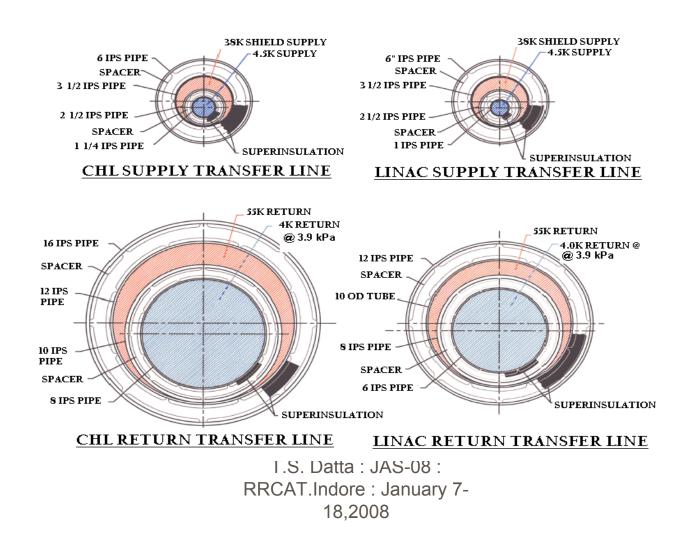
- **Four Valve boxes** : Weka valves, Vacuum break, Instrumentation, Rectangular & Circular shape, LN2 Shielded
- Kacuum jacketed, MLI insulated,LN2 shielded Line, 40 meters length.
- Bemountable Joints to isolate line from Cryostats
- **K** Line without LN2 shielded



- **# MEASURED LOAD : 21 W in 23 meters le**
- **K Actual Load in Line_{T.S.}: Datta 51.5%/ m**

RRCAT.Indore : January 7-18,2008

<section-header><image>


RRCAT.Indore : JAS-08 : 18,2008

JLab Designed MSU Distribution Box

18,2008

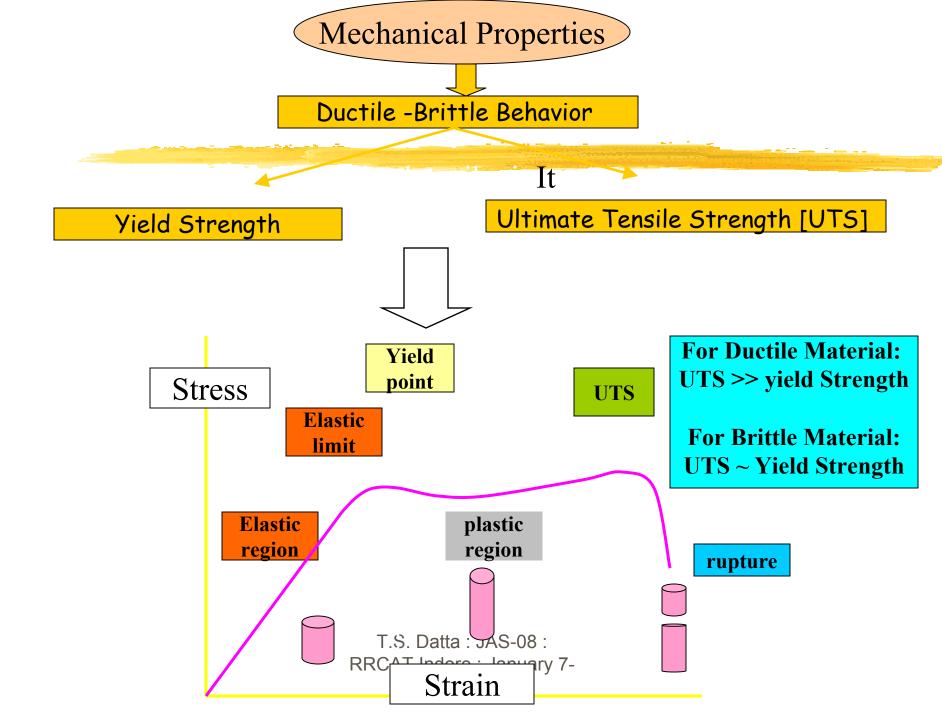
Transfer Line Cross sections (SNS)

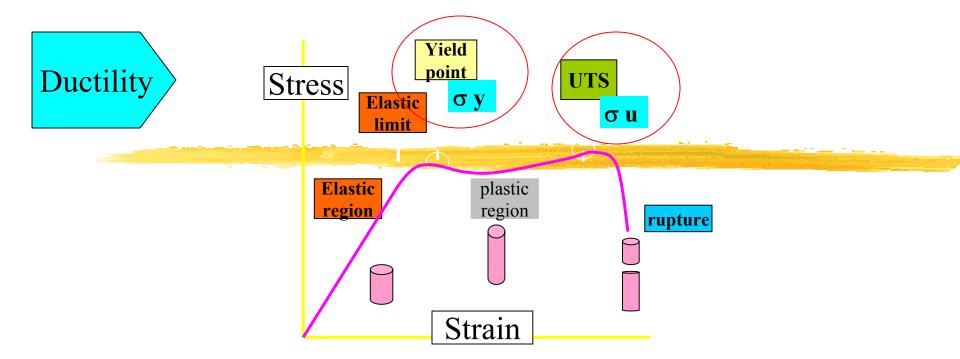
JLab Transfer Line Bayonets

10,2008

Designing and Developing any cryogenic apparatus like cryostats, experimental dewar require good knowledge of material properties at low temperature.

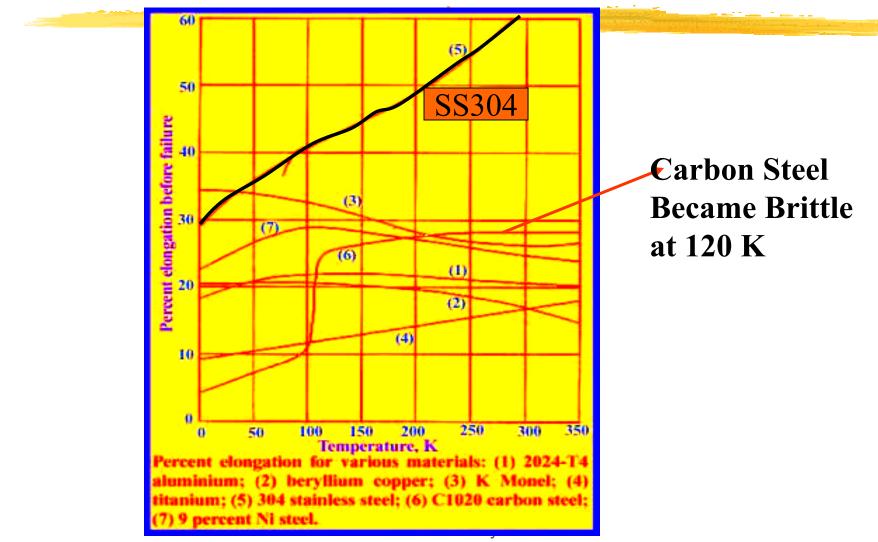

Why do you need to know ?

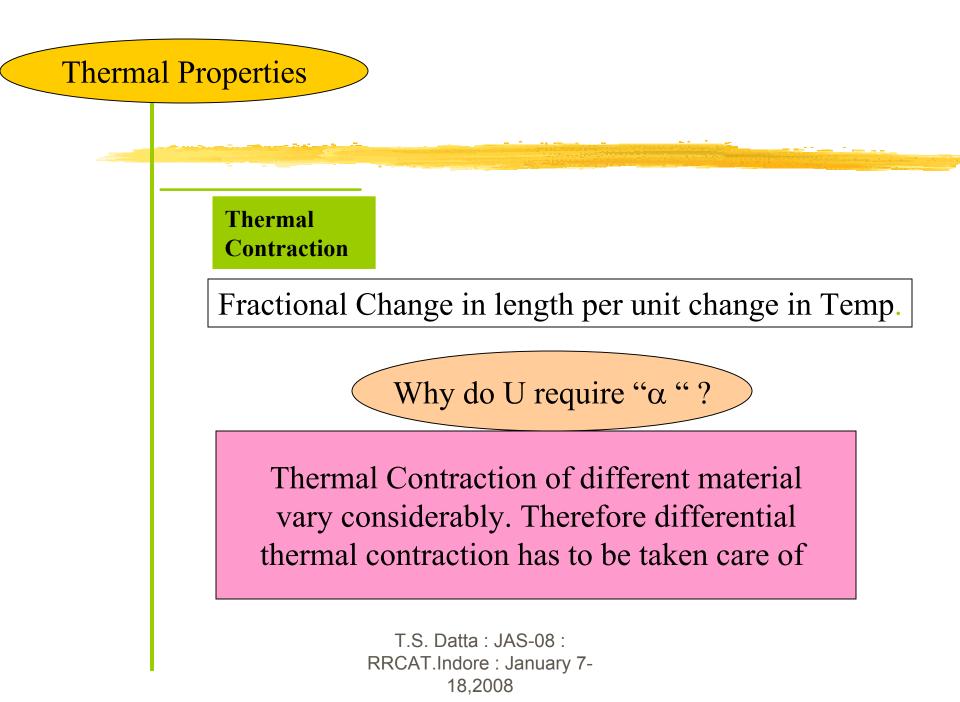

Most of the properties may vary by orders of magnitude between ambient and cryogenic condition


Why does the Property vary?

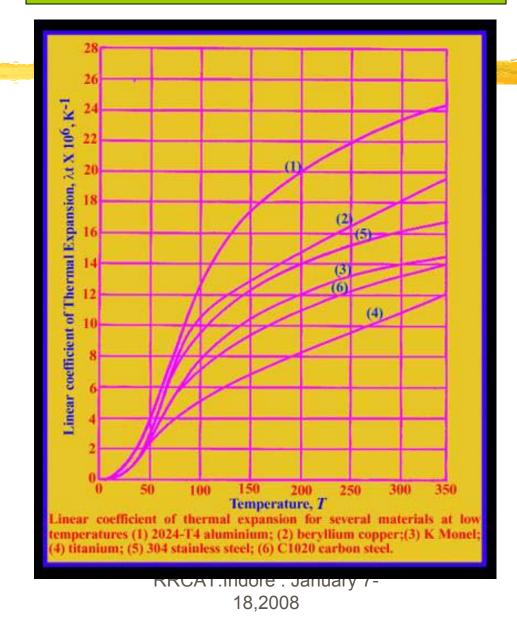
At room temperature the atoms are vibrating very rapidly. Higher the Temp.greater is the amplitude of Oscillation. As the substance is cooled down, the amp. Of atomic vibration is reduced (thermal energy reduces)

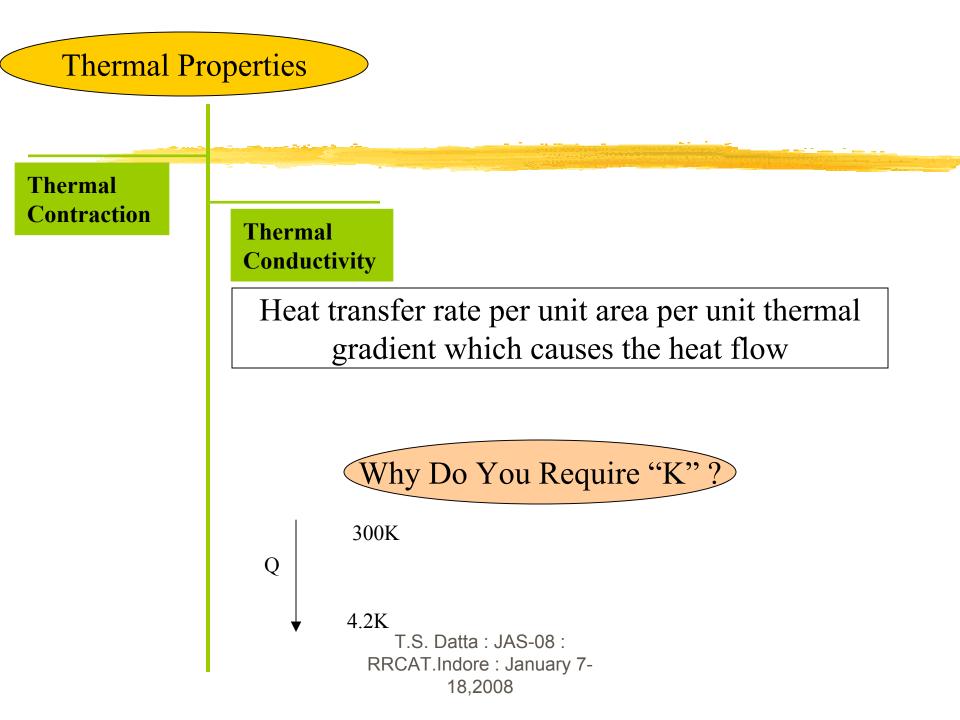
Thus all the properties which dependent on interactions with the atomic vibration (or Lattice) will change at low temperature The decrease in the various types of interaction will show up as variation in the mechanical properties. Thermal properties and electrical properties



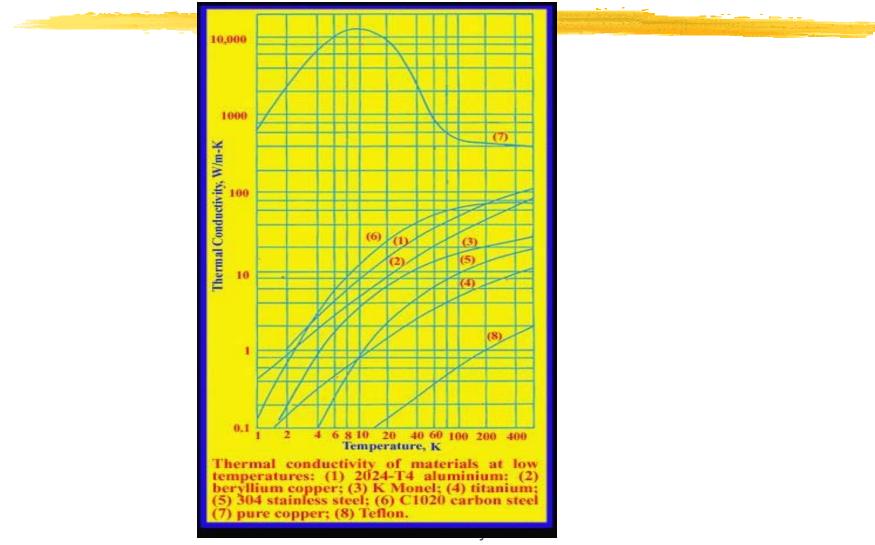

N/m2	σy (4.2K)	σu (4.2K)	σy (80K)	σu (80K)	σ y (300K)	σu (300K)

SS304	547	1660	460	1509	406	659
Al -6061	345	497	332	422	282	312
OFHC Cu	90	418	88	360	75	222
G-10	758	1.5. 758 CAT	Datta : JAS-0 Ind 703 : Janu 18,2008	uary 703	414	414

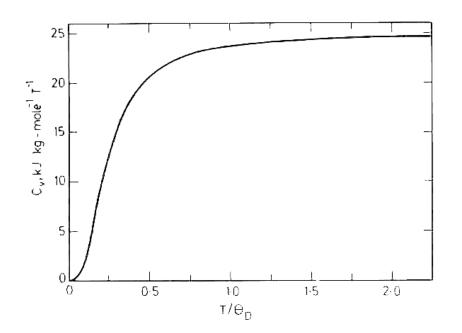

Elongation Before Failure



18,2008



Thermal expansion Coefficient



Thermal Conductivity

18,2008

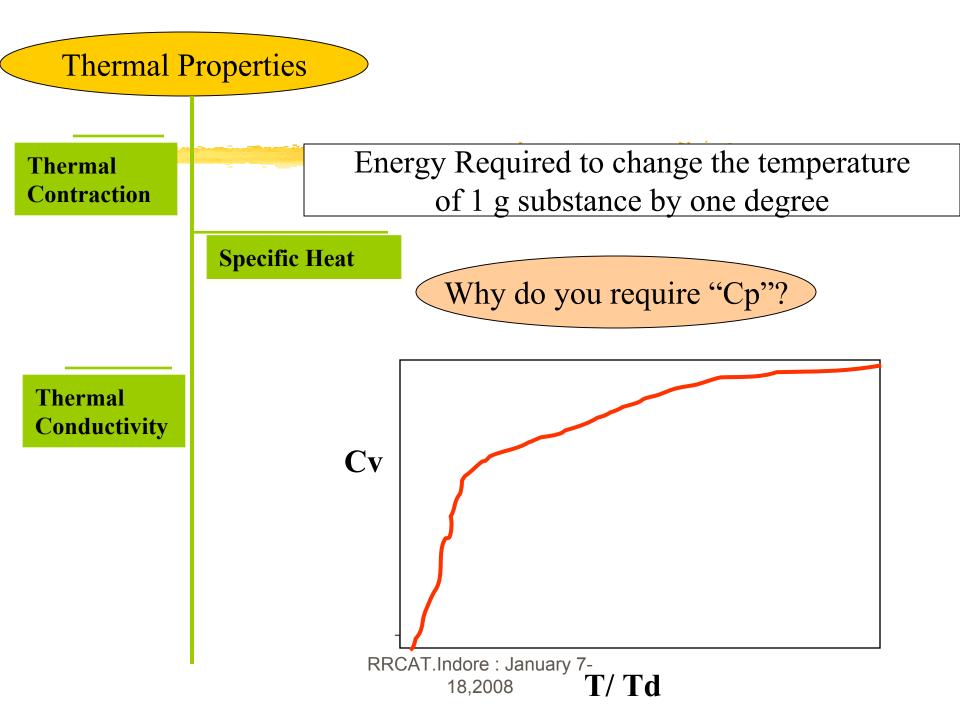
Specific heat of structural materials

Material	$\theta_{\rm D}~({\rm K})$	Material	$\theta_{\rm D}$ (K)
Aluminium	385	Lead	85
Carbon (graphite)	760	Nickel	440
Copper	310	Niobium	265
Gold	180	Silver	220
Indium	105	Titanium	355
Iron	460	Quartz	255

 $\boldsymbol{C}_{v} = 9\boldsymbol{R}\left(\frac{\boldsymbol{T}}{\boldsymbol{\theta}_{n}}\right)^{3} \int_{0}^{\boldsymbol{\theta}/\boldsymbol{T}} \frac{\boldsymbol{x}^{4}\boldsymbol{e}^{\boldsymbol{x}}}{(\boldsymbol{e}^{\boldsymbol{x}}-1)^{2}} d\boldsymbol{x}$

C_v heat capacity per kg mole approximately described by the

Debye function


 θ_D Debye temperature, a material's property

Nb:
$$T_c/\theta_D=0.04$$

nuary 7-

18,2008

3:

Role of Specific Heat on Cool Down

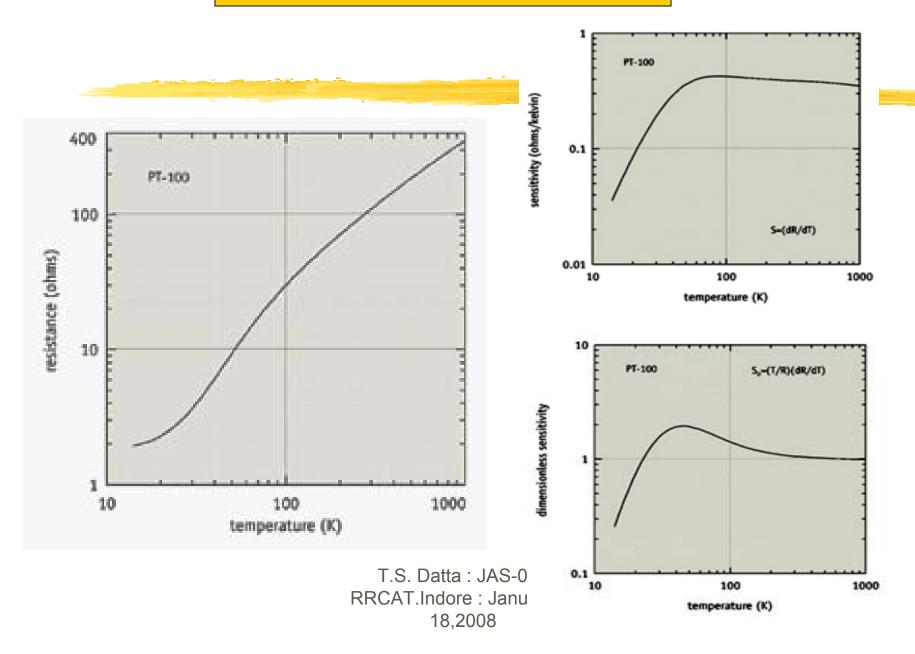
To cool 1 gm mass from Room temperature to 4.2 K Q = m Cp (300-4.2) J, Cp = f(T) At low temperature Cp is less, less heat to be extracted at low Temperature How much Cryogen (Mc) is required to cool 1 Kg mass Mc. L = m. Cp (300-4.2)

Requirement of Cryogen To cool Down

Material	300-	78-4.2 K	With	300-80 (
	4.2 (cold gas	LN2)
	Lhe)		(300-	
			4.2)	
SS	33	1.44	0.80	0.53
	litres/	litres/kg	litres/kg	litres/kg
	kg			
Al	66	3.2	1.60	1.0
	T.S	. Datta : JAS-0	98 :	
	RRCA	T.Indore : Janu	uary 7-	

18,2008

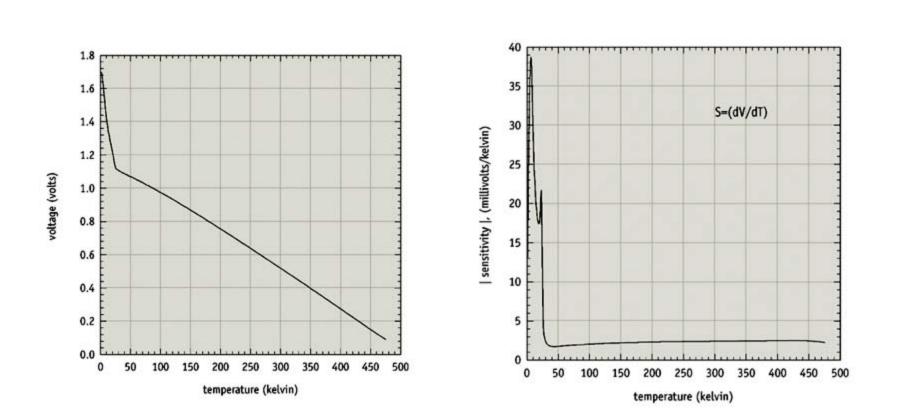
Measuring Instruments at Low Temperature


% Temperature : Platinum, Diode, Thermocouple % Liquid Level : Capacitance, Superconducting, Differential Pressure % Flow rate : Orifice meter, Turbine flow % Quality : Capacitance Type (Liquid/ gas)

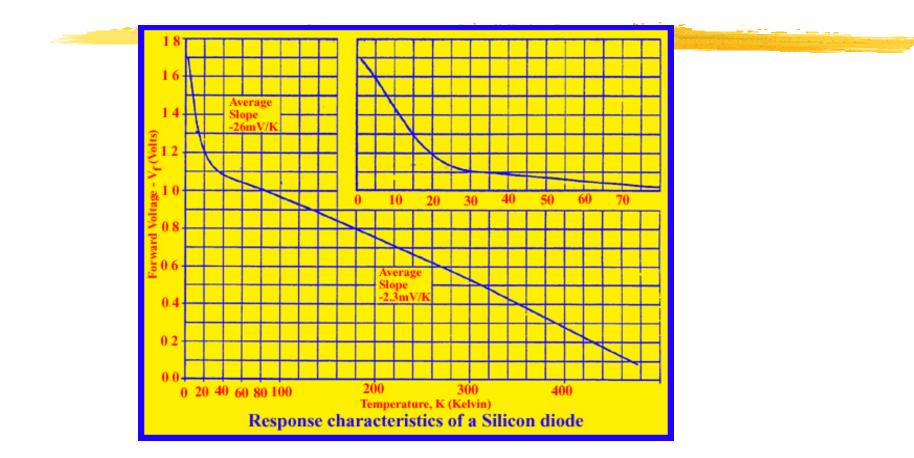
Platinum Resistance Thermometer

Platinum P	T-100		
T (K)	R (Ω)	dR/dT (Q /K)	(T/R)·(dR/dT)
20	2.2913	0.085	0.74
30	3.6596	0.191	1.60
50	9.3865	0.360	1.90
77.35	20.380	0.423	1.60
100	29.989	0.423	1.40
150	50.788	0.409	1.20
200	71.011	0.400	1.10
250	90.845	0.393	1.10
300	110.354	0.387	1.10
400	148.640	0.383	1.00
500	185.668	0.378	1.00
600	221.535	0.372	1.00
700	256.243	0.366	1.00
800	289.789	0.360	1.00

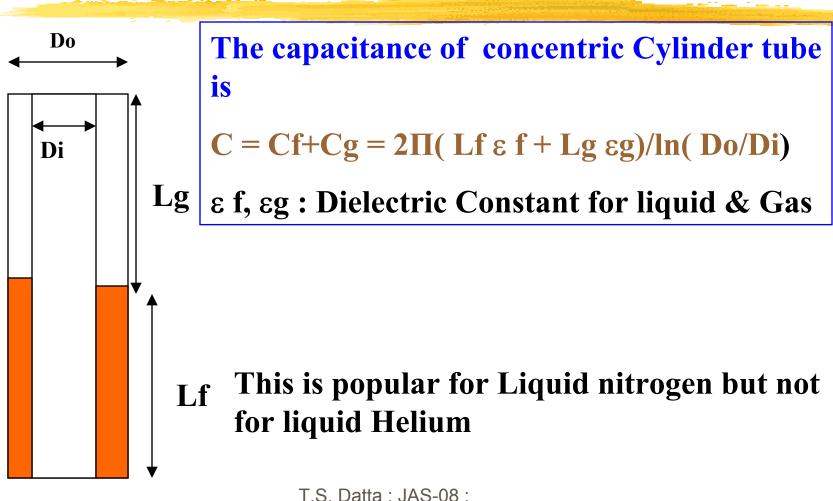
Platinum Resistance Thermometer



Silicone Diode Thermometer


Silicon Diode				
Т (К)	V (volts)	dV/dT (mV/K)		
4.2	1.6260	-33.6		
10	1.4201	-28.7		
20	1.2144	-17.6		
30	1.1070	-2.34		
50	1.0705	-1.75		
77.35	1.0203	-1.92		
100	0.9755	-2.04		
150	0.8687	-2.19		
200	0.7555	-2.31		
250	0.6384	-2.37		
300	0.5189	-2.4		
350	0.3978	-2.44		
400	0.2746	-2.49		
450	0.1499	-2.46		
475	0.0906	-2.22		

Silicone Diode Thermometer



T.S. Datta : JAS-08 : RRCAT.Indore : January 7-18,2008

Silicone Diode Thermometer

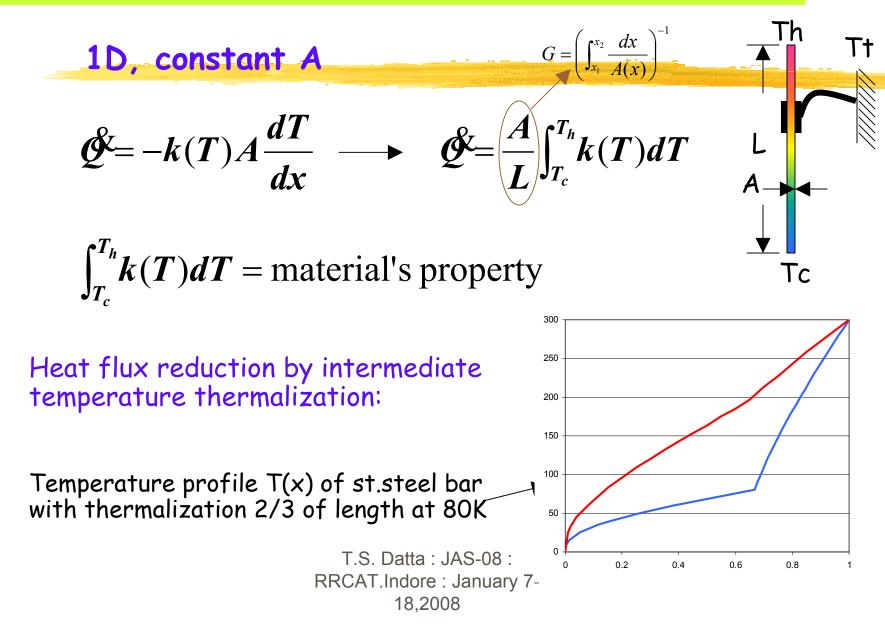
LIQUID LEVEL METER

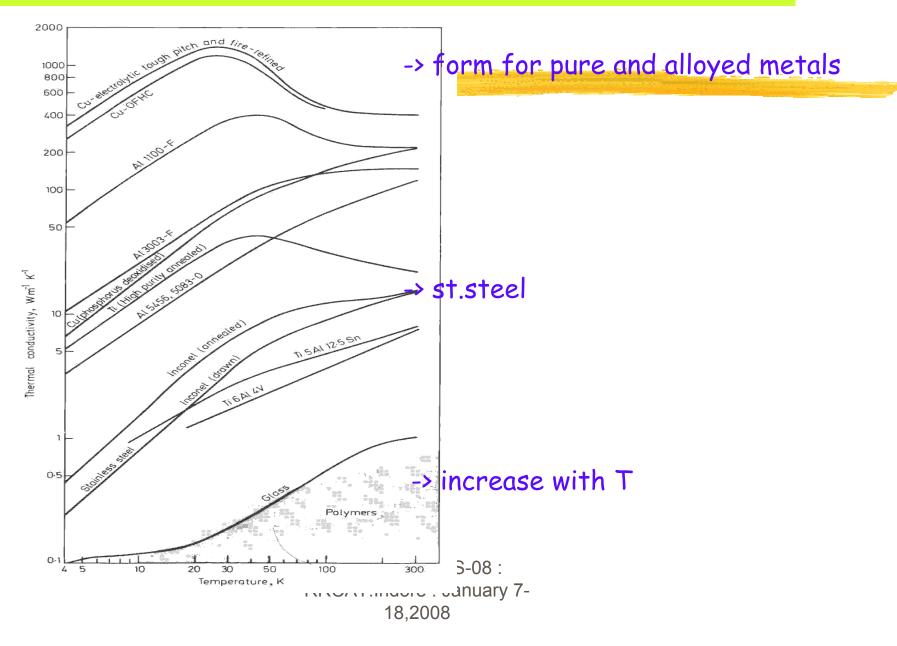
RRCAT.Indore : January 7-18,2008

Liquid level meter by Superconducting wire

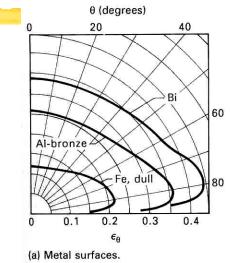
Nb- Ti Conmercial wire (Tc = 12 K)

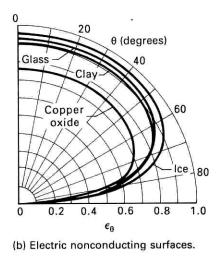
The length of the wire immersed in liquid helium will be superconductor. Resistance will be only for (L-Lf) length of wire. By measuring resistance and comparing with total resistance without liquid we will be able to calculate length of liquid helium level


HELIUM GAS STORAGE TANK AT IUAC



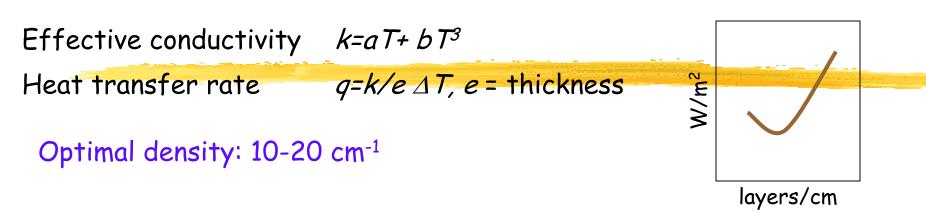
Time-independent conduction




Conductivity of solids

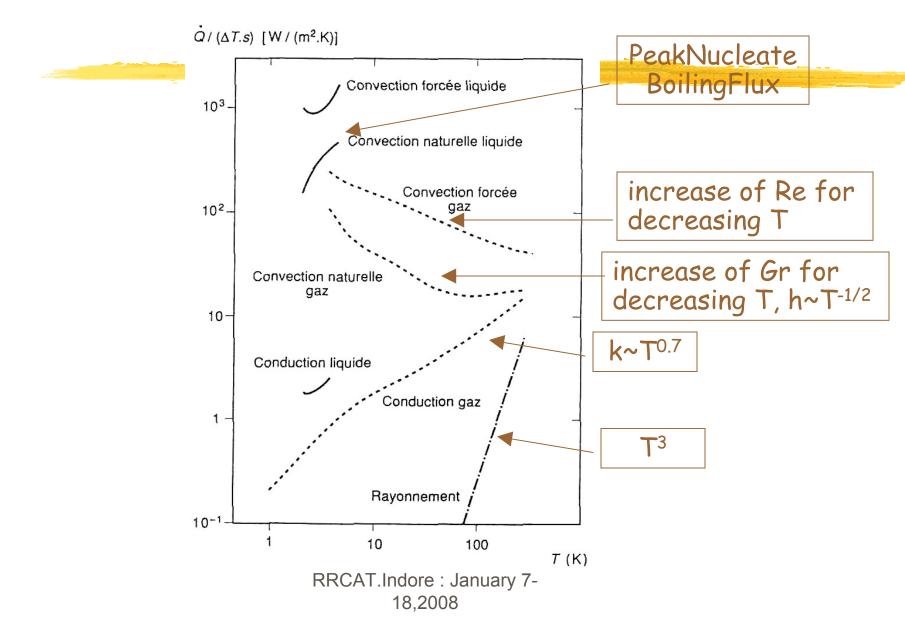
Emissivity and materials

Real emissivities depend on direction and wavelength


Drude law for ideal metal

 $\varepsilon(\lambda, T) = 0.365 \sqrt{\frac{\rho}{T}}$

- **β Polished metals: small** ε
- **Ξ Insulators: large** ε
- $\approx \epsilon = \epsilon$ (**T**): for real metals, ε~**T** at low **T**
- Coatings: since ε related to surface, not bulk, resistance, => lower limit on thickness of reflectors (ρ=1 above ~40nm). JAS-08:


RRCAT.Indore : January 7-18,2008

MLI: effective conductivity

Low boundary temperature:	heat transfer rate determined by aT, not by radiation		
77 K-> 4K	1 single aluminized foil is sufficient in high vacuum		
// K-2 4K	in bad vacuum, MLI provides sufficient insulation		
High boundary temperature:	heat transfer rate determined by radiation important reduction with layer's number		
300 K-> 77K	bad vacuum: radiation dominates anyway		
	T.S. Datta : JAS-08 : RRCAT.Indore : January 7- 18,2008		

Cryogenic heat transfer modes

Conductivity of solids

- Heat carriers: phonons (k~T³) and electrons (k~T)
- Hinder heat transmission <u>at low T</u>?
 DEFECTS
 difference between pure and alloyed
 effect of modification of the defect content: magnetic impurities, annealing, cold work
- Hinder heat transmission <u>at high T</u>?
 Phonon-phonon Phonon-electron
 no difference between pure and alloyed metals
 T.S. Datta : JASoshaviour well known
 RRCAT.Indore : January 7-18,2008