CRYOGENICS FOR ACCELERATOR- 2

T.S. DATTA Inter- University Accelerator Centre New Delhi

T.S.Datta, JAS-08, RRCAT Indore; January 7-18,2008

Cryogenic Course Material

\& Introduction: What is Cryogenics and Why

Cryogenics for acceleratorpresentscentio
\& How to Generate low Temperature /
Production of Cryogen : Thermodynamics /
Refrigeration Cycle, Practical Refrigerator
\& How to Store Cryogen : Heat transfer,
Cryomodule Design, Properties of Material :
\& Measurement at Low temperature :
T.S.Datta, JAS-08, RRCAT

Indore; January 7-18,2008

Liquefaction of gases/ Low temp Achievement

\&Basic Thermodynamic Cycle \&T- S Chart \mathscr{L} Liquefaction cycle for N2 and He \&Components for Liquefaction \&Performance of Practical Refrigerator/ Liquefier

BASIC THERMODYNAMIC PROCESS FOR COOLING

\mathscr{A} A. ISOTHERMAL COMPRESSION (Compressor)

\& B. ADIABATIC EXPANSION (Turbine)
\mathscr{H} C. ISENTHALPIC EXPANSION (JT VALVE)
\& D. ISOBARIC COOLING (Heat Exchanger, Precooler)

$$
\begin{aligned}
& \text { Isothermal compression is achieved with water/ air } \\
& \text { cooling System. W = m. T (} \mathrm{R} / \mathrm{M}) \ln (\mathrm{P} 2 / \mathrm{P} 1) \text {. } \\
& \text { Example : } \mathbf{1} \mathbf{~ g m} \text { gas } \mathrm{T}=\mathbf{3 0 0} \mathrm{K}, \mathrm{P} 2 / \mathrm{P} 1=\mathbf{1 5} \\
& \text { Helium : } 1600 \mathrm{~W}(20 \mathrm{NM} 3), \mathrm{N} 2=200 \mathrm{~W}(2.8 \mathrm{NM} 3
\end{aligned}
$$

T3 < T1 (Cooling)

LIQUEFACTION OF PERMANENT GASES

Qr = Sensible Heat + Heat Of Vaporisation

$($ Qr $)=$ Nitrogen $234 \mathrm{~J} / \mathrm{gm}(300 \mathrm{~K}$ to 78 K$)+199 \mathrm{~J} / \mathrm{gm}$

Sensible Heat

To Liquefy "Permanent Gases"

Or in other way U need to extract the energy from the GAS for example HELIUM

Refrigerator

To Transfer Heat from Source to Sink if source Temperature is less than Sink

Refrigerator is Analogus
To Water Pump to
Transfer Heat (Water)
from Lower Temp (Lower
level) to Higher Temp (
Higher Level)
Power required or pump
size depends on water
capacity (Ref. Load in
Watt) and the difference
Tos. Dettll (ADPR, MRqATmp)

Power (W) required to extract $1 \mathbf{W}$ refrigeration at Tc is: $\mathbf{W}=1 /($ COP)I $=($ Th- Tc) $/ \mathbf{T c}, \mathbf{T h}=300 \mathrm{~K}$, Tc Vary from 200 K to .000001 K

$$
\begin{aligned}
\mathrm{N} 2, \mathrm{Tc} & =78 \mathrm{~K}, \mathrm{~W}=1.68 \mathrm{~W} \\
\mathrm{H} 2, \mathrm{Tc} & =20 \mathrm{~K} \quad \mathrm{~W}=14 \mathrm{~W} \\
\mathrm{He}, \mathrm{Tc} & =4.2 \mathrm{~K}, \mathrm{~W}=70 \mathrm{~W} \\
\mathrm{Tc} & =0.1 \mathrm{~K}, \mathrm{~W}=3000 \mathrm{~W} \\
\mathrm{Tc} & =0.01 \quad \mathrm{~W}=30000 \mathrm{~W}
\end{aligned}
$$

These are Theoretical Power. We have to multiply first with efficiency Of the Cycle and then multiply with mechanical efficiency of all Components of refrigerator

Carnot Refrigeration Cycle

\& 1-2, Compressor Fluid is compressed isentropically. 2-3, Condenser Heat is rejected isothermally (at T2)
3-4, Expander Fluid is expanded isentropically.
\&f 4-1, Evaporator Heat is absorbed isothermally (at T1)

Carnot Helium Refrigeration and Liquefaction Systems

T-S Diagram

To Liquefy "Permanent Gases"

Cooling

Cooling by Adiabatic
Expansion [Isentropic] ${ }^{4}$

Free Expansion
Does External work

Cooling by Joule -Thomson
Expansion [Isenthalpic]

But Practically $\ll 100 \%$ efficient T1>T1' \& T2> ${ }^{\prime}{ }^{\prime}$,
 indore, January 7-18,2008

Cooling by Isentropic Expansion
Or Adiabatic Expansion Or Free Expansion

* Thermally Isolated System $\mathbf{d q}=0$
 No Heat flow (IN/OUT)

to the System

T.S.Datta, JAS-08, RRCAT Indore; January 7-18,2008

T.S.Datta, JAS-08, RRCAT Indore; January 7-18,2008

Expansion Coefficient

$$
\begin{aligned}
& \mu_{\mathrm{s}}=(\mathbf{d T} / \mathrm{dP}) \mathbf{s} \\
& \mu_{\mathrm{s}}=[\mathbf{T}(\mathbf{d V} / \mathbf{d T}) \mathbf{p}] / \mathbf{C p}
\end{aligned}
$$

* For Ideal Gases: $\mathbf{P V}=\mathbf{R}_{\boldsymbol{T}} \boldsymbol{T} \quad \mu \quad=\mathbf{V} / \mathbf{C}_{\mathbf{P}} \quad(+)$ ivs >0

S
Cooling in Expansion

* For Real Gases (means Van-Der-Waals gases) :

$$
\left(p+a / v^{2}\right)(v-b)=R T
$$

$$
\begin{aligned}
\mu_{\mathrm{s}}=(\mathrm{dT} / \mathrm{dP}) \mathrm{s} & =(\mathrm{v} / \mathrm{Cp})[\{1-(\mathrm{b} / \mathrm{v} 2)\} /\{1-(2 \mathrm{a} / \mathrm{vRT})\}\{1-\mathrm{b} / \mathrm{v} 2\}] \\
& \mathrm{b} \ll \mathrm{v} \text { i.e. } \mathrm{b} / \mathrm{v} \ll 1
\end{aligned}
$$

That means $\mu_{\mathrm{s}}>0$

$$
d P=d T \text { hence Cooling }
$$

ADIABATIC/ ISENTROPIC EXPANSION : Gas does an external

 work by lifting piston in reciprocating engine or rotates the turbine blade.It looses energy ---Thermally isolated (dq $=0$, $\mathbf{d s}=0$) Temperature drops

Isentropic expansion Coefficient $\mu_{\mathrm{s}}=(\mathrm{dT} / \mathrm{dp})_{\mathrm{s}}=\mathrm{T} / \mathrm{Cp}(\mathrm{dv} / \mathrm{dT})_{\mathrm{p}}=\mathrm{v} / \mathrm{cp}$ for ideal gas

For van der Walls gas : $\quad \mu_{\mathrm{s}}=\mathrm{v}(1-\mathrm{b} / \mathrm{v}) / \mathrm{Cp}\left[1-(2 \mathrm{a} / \mathrm{vRT})(1-\mathrm{b} / \mathrm{v})^{2}\right]$
Unlike $\mu_{\mathrm{jt}} \cdot \mu_{\mathrm{s}}$ is always positive that is cooling at any temperature and pressure. Second one Temperature drop is more compared to JT expansion for same dP

$$
\begin{aligned}
& \text { T.S.Datta, JAS-08, RRCAT } \\
& \text { Indore; January 7-18,2008 }
\end{aligned}
$$

To Liquefy "Permanent Gases"

Cooling

Joule -Thomson Expansion

Joule -Thomson Valve
More Ideal Condition but technically difficult

ISENTHALPIC EXPANSION (Joule- Thomson Cooling)

Gas does an internal work againt intermoleculer interaction and loose its energy. Hence Temperature reduced.

$$
\mu_{\mathrm{j} t}=(d T / D P) h=1 / C p[T(d v / d T) p-V]
$$

For Ideal Gas

$$
\mu_{\mathrm{jt}}=\mathbf{0}
$$

No Cooling or Heating on Expansion
Cryogenic operating condition (low temp, High pressure) gas does not behave ideally

For real gas (Van dar walls)

$$
\begin{aligned}
& \quad \mu_{\mathrm{jt}}=\left[(2 \mathrm{a} / \mathrm{RT})(1-\mathrm{b} / \mathrm{v})^{2}-\mathrm{b}\right] / \mathrm{Cp}\left[1-(2 \mathrm{a} / \mathrm{vRT})(1-\mathrm{b} / \mathrm{v})^{2}\right] \\
& \text { at low pressure } \\
& \mu_{\mathrm{jt}}=1 / \mathrm{Cp}[(\mathbf{2 a} / \mathbf{R T})-\mathrm{v}] \begin{array}{l}
\text { T.S.Datta, JAS-08, RRCAT } \\
\text { Indore; January } 7-18,2008
\end{array}
\end{aligned}
$$

Joule -Thomson Expansion

Inversion Curve

$\mu>0: d T$ is -ve when $d P$ is -ve, gas cools on expansion
$\mu<0: d T$ and $d P$ have opposite signs, gas heats up on expansion
$\mu=0$: perfect gas, T unchanged by J -T expansion

Joule -Thomson Expansion

$\mu_{\mathrm{jt}}=$ Positive (Cooling)
$\mu_{\mathrm{jt}}=$ Negetive (Heating)
Max Inversion Temperature : Temperature on the inversion Curve at $\mathrm{p}=\mathbf{0}, \quad$ Timax $=2 \mathrm{a} / \mathrm{bR}$

Above max inversion temperature we will not be able to cool the gas for any set of pressure combination.

Gas	He	H2	Ne	N2	Ar	O2
Timax	45	205	250	621	794	761

Just below their max inversion temperature drop in temperature is not significant and temperature drop increases as we lower the inlet temperature and max above their critical temperature. That's the reason JT is always incorporated in the last stage of liquefaction cycle. It can also handles liquid gas mixture unlike turbine

Linde- Hampson Cycle

 [Joule-Thomson Cycle]
Mainly based on Joule -Thomson Expansion

Linde- Hampson Cycle is for N 2 or O 2 Liquefaction not for He or H2

Isentropic Expansion Vs. Isenthalpic Expansion

$$
\begin{gathered}
\mu_{\mathrm{s}}=[\mathbf{T}(\mathbf{d V} / \mathbf{d T}) \mathbf{p}] / \mathbf{C p} \quad \mu_{\mathrm{jt}}=[\mathrm{T}(\mathrm{~d} \mathbf{V} / \mathrm{d} T)[\mathrm{p}-\mathrm{v}] / \mathrm{Cp} \\
\mu_{\mathrm{s}}-\mu_{\mathrm{jt}}=\mathrm{v} / \mathrm{Cp}>0 \\
\mu_{\mathrm{s}}>\mu_{\mathrm{jt}} \longrightarrow(\mathbf{d T} / \mathbf{d P})_{\mathrm{s}}>(\mathbf{d T} / \mathbf{d P})_{\mathrm{Jt}}=\mathrm{v} / \mathbf{C p}>0
\end{gathered}
$$

That means

T.S.Datta, JAS-08, RRCAT

Indore; January 7-18,2008

Example
 \square

He

Thru J-T valve
Thru Expansion engine

Isentropic Expansion Vs. Isenthalpic Expansion

$$
\begin{gathered}
\mu_{\mathrm{s}}=[\mathbf{T}(\mathbf{d} \mathbf{V} / \mathbf{d T}) \mathbf{p}] / \mathbf{C} \mathbf{p} \quad \mu_{\mathrm{jt}}=[\mathbf{T}(\mathbf{d V} / \mathbf{d T}) \mathbf{p}-\mathbf{v}] / \mathbf{C} \mathbf{p} \\
\mu_{\mathrm{s}}-\mu_{\mathbf{j t}}=\mathbf{v} / \mathbf{C} \mathbf{p}>\mathbf{0}
\end{gathered}
$$

$$
\mu_{\mathrm{s}}>\mu_{\mathrm{jt}} \longrightarrow(\mathrm{dT} / \mathrm{d} \mathbf{P})_{\mathrm{s}}>(\mathrm{dT} / \mathrm{d} \mathbf{l P})_{\mathrm{Jt}}=\mathrm{v} / \mathbf{C p}>\mathbf{0}
$$

That means

$\mu_{\mathbf{j t}} \longrightarrow \mu_{\mathrm{s}}$ When $\mathbf{v} \longrightarrow \mathbf{0}$
 Indore; January $7=18,2008$

T - S CHART FOR GAS

ISOBARIC COOLING

He at 15 bar and at 20 K

First Liquefaction of Helium was achieved by this Process

PERFORMANCE PARAMETERS OF A LIQUEFIER

LIQUID YIELD $=\mathbf{m f} / \mathbf{m}$ (Fraction of compressed gas liquefies)

Power Required to produce unit production of Liquid $=\mathrm{Wa} / \mathrm{mf}$
FOM $=(\mathbf{W i} / \mathbf{m f}) /(\mathbf{W a} / \mathbf{m f})$
Wi/ mf = ideal power required
Compressor Capacity : $56 \mathrm{gm} / \mathrm{sec}$, liquid production rate : $150 \mathrm{l} / \mathrm{hr}=5 \mathrm{gm} / \mathrm{sec}: \mathrm{mf}=.09$

> We Consume power of 200 KW to produce $150 \mathrm{l} / \mathrm{hr}$, Wa/mf $=40 \mathrm{KJ}$ to produce 1 gm liquid, $\mathrm{Wi} / \mathrm{mf}=7 \mathrm{KJ}, \mathrm{FOM}=0.17$

```
T.S.Datta, JAS-08, RRCAT Indore; January 7-18,2008

\section*{IDEAL THERMODYNAMIC CYCLE FOR COOLING}


Liquid Yield \(=\mathrm{mf} / \mathrm{m}=1\)
Power Required : W/m = T1 ( S1-S2) - (h1-h2)
IMPRACTICAL : DISCHARGE PRESSURE REQUIRED : 700,000 bar
Ideal Work Requirement for \(\mathbf{1 ~ K g}\) Liquid Production
\(\mathrm{N} 2=768 \mathrm{KJ}, \mathrm{He}=6800 \mathrm{KJ}, \quad \mathrm{H} 2=12000 \mathrm{KJ}\)

\section*{ENERGY \& MASS BALANCE OF CLOSED SYSTEM}

\[
\mathrm{m} 1 \mathrm{~h} 1+\mathbf{W}=\mathbf{m} 2 \mathrm{~h} 2+(\mathrm{m} 1-\mathrm{m} 2) \mathrm{h} 3+\mathbf{Q}
\]


The thermodynamically ideal liquefaction system.
* Coefficient of Performances (COP)

COP = Work required to liquefy unit mass compressed

Flow Equation:
\[
\mathrm{Q}_{\text {net }}-\mathrm{W}_{\text {net }}=\sum_{\text {outlet }} \dot{\mathrm{m}} h-\sum_{\text {inlet }} \dot{\circ} h
\]
\(-\mathrm{W} / \mathrm{m}=\mathrm{T}_{1}\left(\mathrm{~S}_{1}-\mathrm{Sf}\right)-(\mathrm{h} 1-\mathrm{hf})\)
Work done to liquefy unit mass compressed
e.g He \(\mathrm{T}_{1}=300 \mathrm{~K}, \mathrm{~S}_{1}=32 \mathrm{~J} / \mathrm{g}, \mathrm{h}_{1}=1573 \mathrm{~J} / \mathrm{g}\) \(\mathrm{Tf}=4.2 \mathrm{~K}, \mathrm{Sf}=3.2 \mathrm{~J} / \mathrm{g}, \mathrm{hf}=9 \mathrm{~J} / \mathrm{g}\)
Work required per unit mass liquefied
\(\sim 300\) (32-3.2) - (1573-9) J/g
\(\sim 7000 \mathrm{~J} / \mathrm{g}\)

\section*{Vapor compression process}
e.g.: Typical Freon refrigerator

1

T.S.Datta, JAS-08, RRCAT Indore; January 7-18,2008

\section*{\&Hampson process}

- This uses a heat exchanger (HX) between the compressor and the load for heat energy exchange between the supply and return streams.
- This process supports lower temperature load operations more efficiently than the vapor compression process.
```

T.S.Datta, JAS-08, RRCAT
Indore; January 7- 18,2008

```

\section*{Schematic of L-H ( J-T ) cycle}



Entropy s
The Linde-Hampson cycle. The statepoints refer to the numbered points in the Linde-Hampson liquefaction system.

Balance the Enthalpy \([\mathrm{H}(\mathrm{IN})=\mathrm{H}(\mathrm{OUT})]\)
Yield (Y) \(=(\mathrm{h} 1-\mathrm{h} 2) /(\mathrm{h} 1-\mathrm{hf})\)

\section*{L-H ( J-T ) cycle}

\section*{Work Done Required}
\[
\begin{gathered}
\text { Balance the Enthalpy }[\mathrm{H}(\mathrm{IN})=\mathrm{H}(\mathrm{OUT})] \\
\text { Yield }(\mathrm{Y})=(\mathrm{h} 1-\mathrm{h} 2) /(\mathrm{h} 1-\mathrm{hf})<1
\end{gathered}
\]

Work Required per unit mass liquefied \(-\mathrm{W} / \mathrm{mf}=[(\mathrm{h} 1-\mathrm{hf}) /(\mathrm{h} 1-\mathrm{h} 2)][\mathrm{T} 1(\mathrm{~S} 1-\mathrm{S} 2)-(\mathrm{h} 1-\mathrm{h} 2)]\)

For Ideal case : \(\mathrm{m}=\mathrm{mc}=\mathrm{mf}\)
\(-\mathrm{W} / \mathrm{m}=\mathrm{T} 1\) (S1-Sf) - (h1-hf)
Work done to liquefy unit mass compressed
FOM = Work(ideal)/Work(real)
\(=[(\mathrm{h} 1-\mathrm{h} 2) / \mathrm{h} 1-\mathrm{hf})][\{\mathrm{T} 1(\mathrm{~S} 1-\mathrm{S} 2)-(\mathrm{h} 1-\mathrm{hf})\} /\{\mathrm{T} 1(\mathrm{~S} 1-\mathrm{S} 2)-(\mathrm{h} 1-\mathrm{h} 2)\}]\)

Energy balance on the closed system (HX, Exp Valve \& liquid receiver)
\(\mathbf{m} \cdot \mathbf{h}_{\mathbf{2}}=\left(\mathbf{m}-\mathbf{m}_{\mathrm{f}}\right) \mathbf{h}_{\mathbf{1}}+\mathbf{m}_{\mathrm{f}} \mathbf{h}_{\mathrm{f}}\) or \(\mathrm{m}_{\mathrm{f}} / \mathrm{m}=\mathrm{y}(\) yield \()=\left(\mathbf{h}_{1}-\mathrm{h}_{2}\right) /\left(\mathrm{h}_{1}-\mathbf{h}_{\mathrm{f}}\right)\)
\(Y\) increases : By lowering h2 (Discharge pressure, \(\mu_{\mathrm{jt}}=0\).)
h1 \(\&\) hf are constant
Although production rate can be enhanced by rising the discharge pressure
but what cost?
\(W+\mathbf{m h}_{1}=\mathbf{Q}+\mathrm{mh}_{2}\), and \(Q\) for isothermal process \(=T_{1}\left(S_{1}-S_{2}\right)\)
The work requirement per unit mass liquefied is
\[
\begin{array}{r}
\mathbf{W} / \mathbf{m}_{\mathbf{f}}=\mathbf{y}\left[\mathbf{T}_{\mathbf{1}}\left(\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}\right)-\left(\mathbf{h}_{\mathbf{1}}-\mathbf{h}_{\mathbf{2}}\right)\right] \\
\text { T.S.Datta, JAS-08, RRCAT } \\
\text { Indore; January 7-18,2008 }
\end{array}
\]

A simple table on liquid yield and work required per unit production of liquid nitrogen for various compressor discharge pressure is presented here ( \(\mathrm{T}_{1}=300 \mathrm{~K}, \mathrm{P}_{1}=1 \mathrm{bar}\) absolute pressure, \(\mathrm{h}_{\mathrm{f}}=30 \mathrm{~J} / \mathrm{gm} . \mathrm{h}_{1}=462 \mathrm{~J} / \mathrm{gm}\) )
\begin{tabular}{|r|r|r|r|r|}
\hline Pressure ( \(\mathbf{P}_{2}\) ) & \multicolumn{1}{|c|}{\(\mathbf{h}_{2}\)} & \(\mathbf{Y}=\mathbf{m}_{\mathrm{f}} / \mathbf{m}\) & \multicolumn{1}{c|}{\(\mathbf{W} / \mathbf{m}_{\mathrm{f}}\)} & \multicolumn{1}{c|}{\(\mathbf{F O M}\)} \\
\hline \(\mathbf{2 0} \mathbf{b a r}\) & 454 & \(\mathbf{0 . 0 2}\) & 12888 & 0.06 \\
\hline \(\mathbf{5 0}\) & 448 & 0.03 & 9937 & 0.08 \\
\hline \(\mathbf{1 0 0}\) & 438 & \(\mathbf{0 . 0 6}\) & \(\mathbf{7 2 0 0}\) & 0.11 \\
\hline \(\mathbf{2 0 0}\) & 425 & 0.09 & 5564 & 0.13 \\
\hline & & & & \\
\hline
\end{tabular}

For 10 litre/ hr liquid nitrogen production : Compressor capacity required at 100 bar discharge pressure
\(\mathrm{m}=\mathrm{mfx} \mathrm{y}=8 \mathrm{~kg} / \mathrm{hr} / 0.06=133 \mathrm{~kg} / \mathrm{hr}=106 \mathrm{M} 3 / \mathrm{hr}\)


\section*{LIQUID YOELD CAN BE INCREASED BY PRECOOLING}

\section*{( by lowering the value h 1 )}

\section*{Yield (Y) = (h1-h2)/(h1-hf)}

Liquid yield for Linde precooled systemwith \(\mathrm{P} 2=100\) bar
\begin{tabular}{|l|r|r|r|r|}
\hline Precool temp. & \multicolumn{1}{|c|}{300} & \multicolumn{2}{|c|}{250} & \multicolumn{1}{|c|}{200} \\
\multicolumn{1}{|c|}{\(\mathbf{1 5 0}\)} \\
\hline \(\mathbf{Y}=\mathrm{m}_{\mathrm{f}} / \mathrm{m}\) & \(\mathbf{0 . 0 6}\) & 0.08 & 0.14 & \(\mathbf{0 . 5 7}\) \\
\hline
\end{tabular}

Power remains same, Add Refrigation power for precoolant


Entropy \(s\)
Precooled Linde-Hampson cycle. The statepoints refer to the numbered points in the precooled Linde-Hampson system.

\section*{Work Done Required}


\section*{LIQUEFACTION OF HELIUM/ HYDROGEN}

MAX INVERSION TEMP ( 45 K FOR HE. AND 205 FOR H2) IS BELOW ROOM TEMPERATURE

SIMPLE LINDE SYSTEM WILL HAVE HEATING EFFECT.

EVEN PRECCOLED BY LN2 FOR HELIUM WILL NOT WORK.

\section*{BY USING LH2 AS A PRECOOLANT: WE NEED ANOTHER CYCLE FOR HYDROGEN : COST}

ALTERNATIVELY : ADDING ONE ADIABATIC EXPANSION PROCESS BY USING A TURBINE
```

T.S.Datta, JAS-08, RRCAT Indore; January 7-18,2008

```

\section*{Linde- Hampson Cycle} [Joule-Thomson Cycle]

\section*{Mainly based on Joule -Thomson Expansion}


Linde- Hampson Cycle is for N 2 or O 2 Liquefaction not for He or H2

\section*{Why Not Helium or Hydrogen?}




\section*{THE LIQUEFACTION MODE}


\section*{NITROGEN PRE-COOLING PRINCIPLE}


\section*{NITROGEN PRE-COOLING OF A LIQUEFIER}


\section*{HOW MUCH LN2 IS THEORETICALY NECESSARY ?}

Energy to be extracted to cool the equivalent mass of 1 Litre of helium from 300 to 80 K :
\[
125.0 \times 5.2 \times(300-80)=14300 \mathrm{~J}
\]

Quantity of liquid nitrogen to vaporise:
\(14300 /(200+234)=329.5 \mathrm{~g}\)
or \(329.5 / 808=0.4\) Litre of liquid nitrogen
Be careful, this is theory ! Do not forget:
-The warm heat exchanger is not perfect
-There are LN2 storage and distribution losses

\section*{NITROGEN CHANNELS IN THE MAIN HEAT EXCHANGER (2)}


The lower part of HX1acts as a liquid nitrogen vaporiser.


\section*{Linde-Hampson Cycle( Joule-Thompson Cycle)}


\section*{THE BRAYTON CYCLE}


\section*{THE CLAUDE CYCLE 1 Expander}

JOULE
THOMSON
BRAYTON




\section*{Liquefaction Vs. Refrigeration}

Same Technical Thermodynamical Cycle as Liquefaction Cycle. Difference in way of operation

\section*{HOW?}


\section*{Carnot Helium Refrigeration and Liquefaction Systems}

\section*{Performance Comparisons of Helium \\ Refrigerators and Liquefiers \\ \(\frac{\text { Carnot work required for liquefaction }[\mathrm{W} /(\mathrm{g} / \mathrm{s})]}{\text { Carnot work required for refrigeration }[\mathrm{W} / \mathrm{W}]}=\frac{W_{\text {carnot }}}{C O P_{I N V}}=\frac{6823[\mathrm{~W} /(\mathrm{g} / \mathrm{s})]}{70[\mathrm{~W} / \mathrm{W}]} ; 100 \mathrm{~W} /(\mathrm{g} / \mathrm{s})\)}

That is, the Carnot work required for approximately 100 W of refrigeration is equivalent (on an equal Carnot work basis) as the Carnot work required to liquefy \(1 \mathrm{~g} / \mathrm{s}\) at 1 atm saturation condition.

\section*{Carnot Helium Refrigeration and Liquefaction Systems}

\section*{Performance Comparisons of Helium Refrigerators and Liquefiers (Cont.) \\ If the expander output work is not recovered,}
\(\frac{\text { Ideal Power required for liquefaction }[\mathrm{W} /(\mathrm{g} / \mathrm{s})]}{\text { Ideal Power required for refrigeration }[\mathrm{W} / \mathrm{W}]}=\frac{8387[\mathrm{~W} /(\mathrm{g} / \mathrm{s})]}{71[\mathrm{~W} / \mathrm{W}]} ; 120 \mathrm{~W} /(\mathrm{g} / \mathrm{s})\)

That is, the Carnot work required for approximately 120 W of refrigeration is equivalent (on an equal Carnot work basis) as the Carnot work required to liquefy \(1 \mathrm{~g} / \mathrm{s}\) at 1 atm saturation condition If the expander output work is not recovered.

\section*{Carnot Helium Refrigeration and Liquefaction Systems}

\section*{Performance Comparisons of Helium \\ Refrigerators and Liquefiers}
\(\frac{\text { Ideal Power required for liquefaction }[\mathrm{W} /(\mathrm{g} / \mathrm{s})]}{\text { Ideal Power required for refrigeration }[\mathrm{W} / \mathrm{W}]}=\frac{8387[\mathrm{~W} /(\mathrm{g} / \mathrm{s})]}{71[\mathrm{~W} / \mathrm{W}]} ; 120 \mathrm{~W} /(\mathrm{g} / \mathrm{s})\)
\[
=\frac{\left(\frac{w_{\text {Carnot }}}{w_{C}}\right)_{l}}{\left(\frac{w_{\text {Carnot }}}{w_{C}}\right)_{r}}=\frac{\left(\frac{6823}{8387}\right)_{l}}{\left(\frac{1429.5}{1449.9}\right)_{r}}=\frac{81.4}{98.6} ; 82.5 \%
\]

A refrigeration cycle having 30\% of Carnot efficiency is expected achieve 25\% in liquefaction mode

\section*{Components of Helium Liquefier}
1. Compressor station 2.Oil removal module 3. Gas pressure control panel
4. Buffer tank
5. Cold Box of liquefier/refrigerator 6.Transfer siphon Static dewar Transfer lines Mobile dewar Distribution valve box
12 Recovery gas bag
13 Recovery compressor
14 HP storages
15 Drier

T.S.Datta, JAS-08, RRCAT Indore; January 7-18,2008


Heat Exchanger :Collins Type Plate fin : Present

Oil level<0.1 PPM

Turbine:
RPM \(>\mathbf{1 , 0 0 , 0 0 0}\)
Bearing : Static/ Dynamic

\author{
helium Gas
}

ı.১.עata, JA১-Uర, KKしA I

Indore; January 7-18,2008

\section*{HELIUM COMPRESSOR (Jefferson Lab)}


\section*{Warm Helium Compressor}

T.S.Datta, JAS-08, RRCAT

Indore; January 7-18,2008

\section*{4 K Refrigerator (Cold box)}


\title{
The Plate Fin Heat Exchanger
}


\section*{Sulzer Gas Bearing Turbine}

ta, JAS-08, RRCAT incore; January 7-18,2008

\section*{Commercial liquefier}
\& Nitrogen : Many (Stirling:Netherland, Linde , PCI 10-100 litres/hr)
\(\triangle\) Large Capacity : BOC, Air Liquide, Paraxair ( Gas separation, Turbine based)
\(\triangle\) Laboratory : Storage Option is Preferable, subject to reliable supply
\& Helium :
© Low Temp Lab : 10-40 litrs hr ( CTI/Koch/ PSI, Linde ) RRCAT, TIFR, IISC), : Reciprocating/ Screw Compressor, Rec/ Turbine
\(\triangle\) Accelerator Project
\(\boxtimes\) IUAC. Delhi : 150 litres/hr M/s CCI , Two Reci Expander
\(\boxtimes\) VECC. Calcutta : \(\mathbf{1 0 0}\) I/hr M/s Airliquide, Two Turbine
区TIFR: 350W: M/s Linde, Two Turbine
\(\mathscr{A}\) Outside India : KEK : 8 KW ( ~ 2500 I/hr), LHC : \(\mathbf{1 8}\) KW
\(\triangle M / S\) Linde \& \(M / S\) Air Liquide, Fermi lab :

\section*{Vapor compression process}

\section*{e.g.: Typical Freon refrigerator}


This process typically requires 1 kW of input power for \(\sim 3 \mathrm{~kW}\) of cooling load
\[
\begin{gathered}
\text { Carnot efficiency }=\quad \frac{W_{\text {Carnot }}}{W_{\text {actual }}}=\frac{Q_{L O W} \cdot C O P_{I N V}}{W_{\text {actual }}}=\frac{3 \cdot(0.23)}{1}=0.68 \\
\begin{array}{l}
\text { T.S.Datta, JAS-08, RRCAT } \\
\text { Indore; January 7-18,2008 }
\end{array}
\end{gathered}
\]```

