Radioactive Ion Beam project at VECC Kolkata

Alok Chakrabarti

Variable Energy Cyclotron Centre 1/AF, Bidhan Nagar, Kolkata 700 064, India Plan of the talk

Introduction

Overview of the facility

Present status of activities

Future plans

What is **RIB**?

RIB : Accelerated beams of β -unstable heavy-ions

🕩 1 keV/u – 1 GeV/u

What can one study with RIB?

How to produce RIB?

ISOL method

Proposal for acceleration to 1.3 MeV/u & Electron Linac as new primary accelerator

(newly funded)

What have we achieved so far?

Thick target R&D : first few targets

Carbon*, Al₂O₃, ZnO, HfO₂, BN, LiF, MgO, CaCl₂, ThC₂, UC₂, ZrO₂

SEM of Al₂O₃ & HfO₂

SEM of RVCFSEM of RVCF + Al2O3*RVCF : Reticulated Vitreous Carbon Fiber

Integrated Thick-Target Electron Beam Plasma Ion-Source

Target holder

Ionization of Radioactive atoms in on-line

Needed : Good on-line ionization efficiency for desired charge state over a wide mass range

$RFQ \Rightarrow q/A = 1/14 ; A=100, q>7^+$

ECR ion-source best choice!

- Stable operation over long time
- Good ionization efficiency, high charge states

BUT !!!

- Poor vacuum close to target chamber (~10⁻³ mbar)
- Radiation damage of permanent magnets

SOLUTION ! Charge Breeder Two ion sources in cascade

Integrated Target-ion source 1+ RIB ECR ion-source n+ RIB

Conceptual scheme

vECRIS : at safe distance ~ 10⁻⁶ mbar vacuum inside plasma chamber

v ECR permanent magnets protected from high radiation near target

1⁺ ions : typical energy 1.5 keV/u; ions need to be decelerated or
 else will pass through the ECR plasma without being captured

Decelerate 1⁺ beam to ~ 20 eV (plasma potential)

Deceleration \Rightarrow high transverse emittance growth

Gradual deceleration \Rightarrow soft landing inside ECR plasma, high capture

Two-Ion Source Charge Breeder : design calculations

1⁺ beam Surface ion-source
 e=10 π.mm.mrad ; E= 15 keV

point-to-point beam transport
 1⁺ ion-source to end of dipole

deceleration & injection of
 1⁺ beam into ECR ion-source

2-IS charge breeder beam-dynamics simulation

• 1⁺ beam from the Surface ion-source injected into 6.4 GHz ECR ionsource for further ionization to n+

• Gradual deceleration of 1^+ beam (~ 20 eV) & soft landing inside ECR

Input beam

RESULTS

IGUN simulation for A=100, 100 nA & 1μ A beam current, space charge effect considered

- Beam size at the center of ECR plasma zone = 12 mm (100 nA)
 & 28 mm (1 mA)
- Beam size less than ECR plasma zone extent (50 mm)
- Coulomb repulsion \Rightarrow beam size larger for $1\mu A$
- § Advantages of gradual deceleration scheme
- Ø beam size less than ECR injection hole (26 mm ϕ)
- Ø decelerated beam focused well inside the radial extent of ECR plasma
- Ø negligible parasitic extraction towards injection side
- Ø calculation should be considered a guideline for actual experiments

Low Energy Beam Transport line

RADIOFREQUENCY QUADRUPOLE (RFQ): first post-accelerator

- Acceleration of RIB from 1.5 to 98 keV/u
- Heavy Ion RFQ q/A \geq 1/14 ; f ~ 35 MHz
- Extended rod structure ; Vane Length 3.1 m ; Vane Voltage 49.5 kV

$\begin{array}{l} \mathsf{RFQ} \ \textbf{development} \Rightarrow \mathsf{stage} \ \mathbf{1} \Rightarrow \texttt{1}_2 \ \ \textbf{scale model} \\ & \mathsf{stage} \ \mathbf{2} \Rightarrow \mathbf{1.7} \ \textbf{m} \ \mathsf{RFQ} \ \textbf{(vane length} = \mathbf{1.55m}) \\ & \mathsf{stage} \ \mathbf{3} \Rightarrow \mathbf{3.4} \ \textbf{m} \ \mathsf{RFQ} \ \textbf{(vane length} = \mathbf{3.1m}) \end{array}$

Result of 1.7 m RFQ Full power tests

Quantity	Measured
f	33.7 MHz
Q	5250
Vane voltage	16.5 kV
Power	1.1 kW
O ³⁺ beam	~ 85 % (RFQ exit)
transmission η	

Rev Sci Instrum. Vol78 (2007) 043303. Nucl. Instrum. & Meth. VolA535 (2004)599.

Experimental Results: <u>Test Beam</u>: Ar 4+

Calculated magnetic strength (kG) (29.06 keV/u)	Experimental magnetic strength (kG)	Transmission Efficiency* % *with electron suppression
Q1: -1.528 Q2: 1.065	Q1: -1.53 Q2: 1.057	~81% FC3/FC2
Q1 : -1.07 Q2: 0.7 D2 : 2.058	Q1: -1.058 Q2: 0.82 D2: 2.058	~80% FC4/FC2

Beam current vs RFQ power : 1.7m RFQ (FC3 at RFQ exit)

FC at QQ focus after RFQ

RFQ to Linac-1 beam-line

Configuration : QQ-Buncher-QQ

• Total length : 3.934 m

IH –Linear Accelerators : post-accelerators after RFQ 100 keV/u \Rightarrow 460 keV/u in 3 linac tanks

Linac -1 full scale prototype

New dedicated beam-line for material science & low energy spectroscopy experiments

- Oxygen : up to 120 keV (after ECR); 464 keV (after RFQ)
- Nitrogen : up to 100 keV (after ECR); 406 keV (after RFQ)
- Argon : up to 160 keV (after ECR); 1.16 MeV (after RFQ)
- Iron : up to 220 keV (after ECR); 1.6 MeV (after RFQ)
- Also H, Helium, O2, Carbon, ...

Typical measured currents: $O^{3+} \sim 70 \ \mu$ A; $O^{4+} 40 \ \mu$ A; $O^{5+} \sim 6\mu$ A; Ar⁴⁺ ~ 4 μ A; He¹⁺ ~ 100 μ A; Fe⁶⁺ ~ 7 μ A; Fe¹⁰⁺ ~ 1 μ A

optimization of ECR continuing

Recent publication from RIB project group (in international peer review journals)

- 1. Phys. Lett. (in press), 2007. Experiments
- 2. Nucl. Instrum. & Meth. B261(2007)1018. RIB facility status
- 3. Rev Sci Instrum. Vol78 (2007) 043303. RFQ results
- 4. J of Phys. Condensed Matter 19, (2007) 236210. Experiments
- 5. Ceramics International, (in press). *Target*
- 6. Nucl. Instrum. & Meth. VolA560 (2006)182. Linac design
- 7. Nucl. Instrum. & Meth. VolA562 (2006)41. Beam-line
- 8. Nucl. Instrum. & Meth. VolA539 (2005)54. Target
- 9. Nucl. Instrum. & Meth. VolA547 (2005)270. Charge breeder design
- 10. J. of Mat. Sc. 40 (2005) 5265. Experiments
- 11. Nucl. Instrum. & Meth. VolA535 (2004)599. RFQ design
- 12. Physica C, Vol416, (2004) 25. Experiments
- 13. Nanotechnology 15 (2004) 1792. *Target*
- 14. Nucl. Instrum. & Meth. VolA447 (2000)345. Charge breeder design

Physics with VECC facility

Nuclear astrophysics with stable and unstable beams

Condensed matter physics with stable & unstable ions

Spectroscopy of n-rich r process nuclei

Element synthesis in the Universe

fusion stops at ⁵⁶Fe ; S-process : up to ²⁰⁹Bi Beyond Bi, only r-process

Type of nuclear astrophysics studies with various accelerators

	St	ellar l	Burni	ng	Explosive B			urnin	g
FACILITY/REACTIONS	н	He	HI	s	r	rp	αρ	γ	ν
Low-E Stable Beam									
High-E Stable Beam									
RIB-ISOL									
RIB-Fragmentation									
Spallation n (v) source									
Free Electron Laser									

Experimental facilities needed for astrophysics experiments

	LE-SB	HE-SB	RIB ISOL	RIB FRAG	SNS	FEL
Gamma array-segmented						
Silicon-Strip Arrays						
Neutron Array						
Spectrograph						
Mass Separator						
Gas/Liquid Targets						
Radioactive Targets						
Traps						

This table shows the general types of apparatus that will be required by experiments with various types of facilities. Of course, the precise nature of a particular device will differ depending on the facility. Here LE-SB and HE-SB stand for low and high energy stable beam facilities; RIB ISOL and RIB FRAG stand for the two types of radioactive beam facilities (ISOL and Fragmentation); SNS stands for Spallation Neutron Source but for some purposes includes linacs and other neutron sources; FEL stands for Free Electron Laser.

Expected yield of some very neutron-rich exotic nuclei at target

⁷⁸Ni : 2 x 10⁹ pps; ¹³²Sn : 2 x 10¹¹ pps

⁹¹Kr: 1 x 10¹² pps; ⁹⁴Kr: 3 x 10¹⁰ pps

Fig. 10. The mass yield of fission fragments from electroninduced fission of ²³⁸U produced by 30 MeV electrons [32].

fission yield per electron for 238U as a function of electron energy –

238U photo-fission fragments mass distribution

Ferromagnetism in Nano-crystalline Zno

Nano-crystalline ZnO \Rightarrow paramagnetic at room temperature Ferromagnetic with oxygen defects

What happens when iron is implanted in Nano-crystalline Zno??

Summary

29 keV/u stable beams available from the facility

 beams available : oxygen, nitrogen, carbon, argon, iron, molecular beams (O₂; N₂ (after ECR))

• acceleration of RI Beams : *December 2008*

• First RI beams planned: ¹³N, ¹⁹Ne

Future plans

Scheme for Advanced RIB Facility

Scientific Opportunities

Physics can be done at each stage of development

Physics with low energy RI Beams : 1.5 keV/u to 1.3 MeV/u

- Material Science, Atomic Physics
- Spectroscopy of r-process nuclei & mass measurements in Ion-trap
- Nucleo-synthesis & Nuclear Structure studies

Physics at higher energies : 1.3 to 100 MeV/u

- All of above
- Synthesis & study of Super Heavy Elements
- Nuclear charge distribution of neutron-rich nuclei
- Precision mass measurements in Storage Rings
- Reaching Drip-lines, study of Halo nuclei, spectroscopy of very short lived nuclei using projectile fragmentation of stable & radioactive ion beams

Physics at each stage

Unique features of the proposed advanced RIB facility

52

Cost projection for Advanced RIB facility

Major activity	Expenditure (Rs. Crore)		
Building, infrastructure, electrical power	110.00		
Acceleration of neutron-rich RIB (e – Linac) & proton-rich RIB to 6/7 MeV/u	180.00		
60 MeV p/α Cyclotron	45.00		
Microtron & Electron Storage Ring (ESR) & Rare Isotope Storage Ring (RIR)	80.00		
Experimental facilities for nuclear & astrophysics, mat. science	75.00		
Ring Cyclotron & PF Separator	80.00		
Total (Rs. Crore)	570.00		

Thank You!

New extension building for Advanced RIB Facility

Sl. No.	Major Activity (financials) for 11th plan VECC RIB	Cost (Rs. lakh)
1.	Linac4,5,6,7,8, Re-bunchers	800=00
2.	RF Transmitters/Amplifiers for Linac 4-8 & Re-bunchers	600=00
3.	Building, power, LCW & other infrastructure, Misc.	600=00
4.	Experimental facilities (detectors, New beam-line for material science, data acquisition system, computation system etc.,)	300=00
5.	Electron-Linac	3,300=00
6.	Target development, remote handling system for target	200=00
7.	Advanced charge-Breeder, beam-line, He-jet multiple target system	600=00
8.	Beam-lines, beam diagnostics equipment, Magnets & power supplies, Vacuum system	370=00
9.	Computer control, Management Information System	100=00
10.	R&D on SCC rf structures (1.3 to 1.8 MeV/u)	180=00
11.	Consultancy	176=70
12.	Salary	116=80
13.	Travel	100=00
14.	Motor vehicle	15=00
15.	Office expenses	14=50
16.	Contingency expenses	27=00
	Total (Rupees lakh)	7,500=00

