

Applications of soft x-ray reflectivity beamline

for

Depth resolved structure and composition analysis of thin films

Mohammed H Modi

modimh@rrcat.gov.in

Outline of the talk

⇒Introduction
 ⇒Beamline
 ⇒Results
 ⇒Summary

Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 India.

- Developed by ISUD, RRCAT
- Publications: > 60
- PhDs: 7 completed 5 in progress

User base IIT Delhi IIT Mumbai BARC Mumbai DAVV Indore UGC-DAE-CSR TIFR Mumbai PRL Ahmedabad

Electron Energy	450 MeV
Beam current	100 mA
Beam lifetime	1.8 hrs
Dipole bending field	1.5 T
Critical wavelength (energy)	61.38Á (202 eV)
Circumference	18.96 m
Typical tune point*	1.55, 1.56
Beam emittance [*] horizontal vertical (1% coupling)	210 nm.rad 2.1 nm.rad
Photon flux (at critical wavelength)	7.2 x 10 ¹¹ photons/ sec/mra d horiz./0. 1%BW
Brightness	6.5 x 10 ¹¹ photons/ sec/mm ² /mrad ² / 0.1%BW

Indus-1 450 MeV synchrotron spectrum

Electron Energy : 450 MeVCurrent :Peak flux \approx 7.1x10¹¹ ph/sec/mradBrightnesCritical wavelength: 61ÅMagneticBeam Life time : 1.8 hours (design)Bending r

Current : 100 mA Brightness ≈7.1x10¹¹ ph/sec/mm²/mrad² Magnetic Field : 1.5 Tesla Bending radius : 1 meter

Beamline	Wavelength range	Monochromator
1. Reflectivity	40 1000 Á	TGM
2. Angle integrated PES	60 1600 Á	TGM
3. Angle resolved PES	40 1000 Á	TGM
4. Photophysics	500 – 2500 Á	Seya-Namoika
5. High resolution VUV	400 - 2500 Á	Off-plane Eagle

What can be probed using Indus SXR?

Indus-1: K edge upto C 280 eV and L edge upto S, Cl 250eV Indus-2: K edge upto Al 1500eV and L edge upto As 1500eV

Indus-2: 2.5 GeV synchrotron spectrum

Indus-2 Parameter

Energy : 2.5 GeV Current : 300mA Field : 1.5 T (BM) Curcumference: 172 m Lifetime: 15 Hrs λ_c =1.98 Å (6.23 KeV)

This beamline is planned to extend the soft x-ray activity of Indus-1 reflectivity beamline to much broader energy range, such that the absorption edges of most of the elements can be covered.

Applications

- X-ray mirrors , filters, detectors
- Thin film/ Multilayers
- Soft matter films
- Polymers
- Photo induced damage

Specifications

- Energy range 100-1500 eV
 Flux 10⁹-10¹¹ ph/sec (@ 300mA 2.5 GeV)
 Resolution 2,000-6,000
 Beam size 0.5 mm(H) X 0.1 mm (V)
- Monochromator VLS-PGM 3 gratings

Indus-2: Soft X-ray Reflectivity Beamline (BL – 3)

- □ Source : Bending magnet port No. 3
- \Box $\sigma_x = 0.203 \text{ mm}, \sigma_y = 0.272 \text{ mm}$
- \Box $\sigma'_{x}(H) = 0.323 \text{ mrad}, \sigma'_{y}(V) = 0.062 \text{ mrad}$
- Acceptance: 3mrad V x 2mrad H

TM1: Pre focusing Toroidal mirror, SM: Spherical mirror, TM2: Post focusing Toroidal mirror

Indus-1Reflectivity beamline

Parameters	
Wavelength Range	40-1000Å
Monochromator	TGM
Resolving Power $\lambda/\Delta\lambda$	200-500
Photon flux	~10 ¹¹
Beam spot	1mm × 1mm

SXR measurement

$$\mathbf{n} = \mathbf{1} - \mathbf{\delta} + \mathbf{i}\mathbf{\beta}$$

$$\frac{\delta \sim 10^{-2} - 10^{-5}}{\beta \sim 10^{-2} - 10^{-7}}$$
$$R = \left| \frac{n_1 - n_2}{n_1 + n_2} \right|^2$$

- Thicknesses at atomic scale
- > Density distribution
- ✤ Interface quality
- Chemical compositions
- ♦ Low contrast thin films

In soft x-ray region optical constants of various materials are not known (experimental data missing).!!!

- Basic Component
 - X-ray Source
 - Beam Optics
 - Goniometer
 - **Detector**

	Conventional	XRR
Geometry	Parafocusing	Parallel beam
Monochromator	Not required	Required
Primary Divergence	>1 deg, depends on slit setup	<0.1 deg
Beam Intensity	Low	High (>10 ⁷ cps)
Range (2θ in deg)	>10 deg	~0
Beam attenuator	Not required	Required

Analysis approach

Kinematical

 $\mathbf{\nabla}$

Dynamical

Wave vector transfer

$$\widetilde{r}_{j,j+1} = r_{j,j+1} \exp\left(-2q_{j,z}q_{j+1,z}\sigma_j^2\right)$$

Silicon Nitride

Silicon nitride films are commonly used in electronics, opto electronics, photonic devices

They have some novel physical properties

High melting point, high density, low mechanical stress, very good diffusion barrier.

They used as a x-ray mask in lithography applications.

Post deposition annealing of amorphos silicon nitride increases the internal quantum efficiency of underlying silicon solar cells

$$\begin{split} D_{P} &= 800 \pm 5 \text{ mTorr }, \\ T_{Hg} &= 100 \ ^{\circ}\text{C} \ , \ T_{s} &= 200 \ ^{\circ}\text{C} \\ \text{Reactant gases: SiH}_{4} (4 \ \% \text{ argon diluted}) \& \text{NH}_{3} \\ & \text{Substrate: Si} (100) \end{split}$$

 $R = SiH_4/NH_3$ R= 0.34 Si 2p core-level XPS spectra

- Peaks centred at 99.4 & 100 ±0.1 eV are signature of elemental Si
- Presence of Si_3N_4 as dominant phase
- Oxidation of the film surface

* Density of Silicon oxide , Silicon nitride and Silicon are 2.20, 3.10 and 2.33 gm/cm³ respectively

Appl. Phys. Lett. 97, 151906 (2010)

Soft X-ray reflectivity

Reflectivity curves of SRSN film at different photon energy near Si $L_{2,3}$ absorption edge Reflectivity curves both experimental and fitted of SRSN film at selected photon energies

- Uniform modulations with $\Delta q=0.14 \text{ nm}^{-1}$
- Clear contrast in reflectivity pattern due to enhancement in optical index contrast near absorption edge energy
- At each photon energy the reflected intensities are entirely different

Appl. Phys. Lett. 97, 151906 (2010)

 $Hg^{*}(^{3}p_{1}) + SiH_{4} \longrightarrow Hg(^{3}s_{1}) + free radicals$

Higher molecular species SiH_x (x = 0 - 3)

vertical growth profile of SRSN film. Red, light green, blue and sky blue balls are representative of Si, H, N and O atoms.

 $[30\% (H + voids) + 42\% (Si_3N_4) + 28\% (Si)]$ by volume

• For 10.5 and 12.4 nm wavelength porosity $(\delta \approx 0; \beta \approx 0)$ and hydrogen incorporation near silicon substrate will increase the value of optical index profile

• At 14.5 nm presence of porosity and hydrogen will decrease the value of optical index profile

Appl. Phys. Lett. 97, 151906 (2010)

Silicon nitride : SR illumination effect

Silicon nitride : SR illumination effect

SR Irradiation 10-300eV photons, •

Virgin film

1.00

2.00

-1.00

Physical Review B 74, 045326 (2006)

Difference in Composition of *a*-SiN_x:H Thin Films probed by Soft X-Ray Reflectivity

Qualitative percentage composition

Film	Si ₃ N ₄	Si (2.33)	H + Voids	ERDA H
	x%	y%	z%	content
G-PL	58	1	41	220/
G-IL	40	20	40	52%
R-PL	45	15	40	270/
R-IL	0	60	40	5/%

Applied Surf Sci. (2014) in press

The Model parameters used to fit R-SoXR data.				
		G	R	Ł
Layer	Thickness	Roughness	Thickness	Roughness
Top (OL)	51.17	5	50	5.8
Middle (PL)	1198.83	8	1110	8.4
Bottom(IL)	23.12	5	11	5
Substrate		5		8.3

Soft Matter Thin Film

19-monolayered Cd-arachidate Langmuir-Blodgett multilayer on a float glass substrate

No.	Layer	Thickness (Å)
1	Cd	0.6
2	COO	2.7
3	CH ₃ (CH ₂) ₁₈	22.9
4	gap	3
5	CH ₃ (CH ₂) ₁₈	22.9
6	COO	2.7
7	Cd	0.6
Total	thickness	55.4

No.	Bond	$\Delta H=K J/mole$
1	C–C	345.6
2	C–O	357.7
3	H–C	411
4	O–CO	459
5	C=O	789
6	0=0	493
7	H-H	432
8	Cd- O	258

AIP Conf. Proc. 1349, 701-702 (2011); doi: 10.1063/1.3606051

Optical properties

Refractive index is a response function of the material to the incident EM field.

Its real and imaginary part are related to each other by Kramer-Kronig integrals

In XRR method both delta and beta are determined simultaneously by fitting the reflected profile at each energy

Thus determination of any one part from an experiment can help to determine the other

The error is basically introduced by finite range of integration as experimental data over infinite range is not possible

Applied Optics 49, 5378 (2010).

Soft x-ray optical properties of compound materials

Formation of chemical bond changes the binding energy and so the absorption edge.

Optical constants of crystalline material further modified due to formation of conduction band

Optical constants of compound materials finally differ from Henke's tabulated value

Si-rich a-SiN_x:H Thin Film : An Optical Response near Si $L_{2,3}$ -edge

Delta and Beta values are less than that of SiC and SiO
SRSN: Potential material for EUV lithography

Comparison of optical index profile δ and β of SRSN film with Si, Si₃N₄, SiC and SiO near Si $L_{2,3}$ absorption edge

J. Phys. D: Appl. Phys. 44, 215501(2011)

Mo/Si multilayer

- Period 69Å,
- . rerioù oza,
- No. of Layer pairs N=65
- Reflectivity 63%

- Achieved high normal incidence reflectivity comparable to those achieved in other world laboratories
- It shows our strength to make soft x-ray multilayer mirrors on large surfaces.
- It exhibits our capability to deposit several layer pairs with required thickness control of $\lambda/4$ precision.
- Reflectivity beamline has played an important role in achieving this goal

Advances in Optical Technologies. Vol. 2012, Article ID 976868

Mo/Si v/s NbC/Si

- very mgn mermar staonny
- No chemical reacation upto 700C

Optics Express 20, 15114 (2012)

Summary

- A new non destructive method using soft x-ray reflectivity has been proposed for qualitative compositional analysis.
- Reflectivity beamline has been used to contribute new dataset of optical constants of various materials in soft x-ray region.
- Various new materials has been proposed for better optical response in the soft x-ray region.
- Photo induced damage in SiN film is analyzed using soft x-ray reflectivity.
- NbC/Si multilayer shows comparable reflectivity as that of Mo/Si multilayer
- NbC/Si thermal stability is far better than that obtained with Mo/Si combination

Thanks for your kind attention