

भारत सरकार /Government of India परमाणु ऊर्जा विभाग / Department of Atomic Energy होमी भाभा राष्ट्रीय संस्थान / Homi Bhabha National Institute राजा रामन्ना प्रगत प्रौद्योगिकी केन्द्र Raja Ramanna Centre for Advanced Technology

HBNI Faculty Profile

Name	Arup Banerjee	
Designation	Professor	
Research Area	 Concepts of density functional theory and time-dependent DFT for studying properties of many- fermion and many-boson systems. Physics and Chemistry of atomic clusters: Electronic, Chemical, and Optical properties of metallic, bi-metallic, and non- metallic clusters. Theory of gas adsorption on nano-materials. Static and dynamic properties of degenerate properties of Bose and Fermi gases Theory of confined atomic and molecules and neural network based modelling of energy functionals 	
Research Profile	We are engaged in ab initio density functional theory (DFT) and time-dependent DFT (TDDFT) based electronic structure calculations to study various ground state and response properties of several bulk and low-dimensional materials. Neural network based modelling of kinetic and exchange- energy functionals in DFT. Physics and Chemistry of atomic clusters: Electronic, Chemical, and Optical properties of metallic, bi-metallic, and non-metallic clusters. Theory of gas adsorption on nano-materials. Collective oscillations of degenerate Bose and Fermi gases. Theory of confined atomic and molecules. Quantum Optics and Photon-Atom Interaction.	

भारत सरकार /Government of India परमाणु ऊर्जा विभाग / Department of Atomic Energy होमी भाभा राष्ट्रीय संस्थान / Homi Bhabha National Institute राजा रामन्ना प्रगत प्रौद्योगिकी केन्द्र Raja Ramanna Centre for Advanced Technology

	Modelling of crystallization process.		
Ten Selected Recent Publications			
1.	"Generation of atomic-squeezed states in an optical cavity with an injected squezzed vacuum", Arup Banerjee , Phys. Rev. A 54 , 5327 (1996).		
2.	"Variation-perturbation method in time-dependent density-functional theory", Arup Banerjee and M. K. Harbola, Phys. Lett. A 236 , 525 (1997).		
3.	"Density-functional theory calculations of total energies, ionization potentials and optical response properties with the van Leeuwen-Baerends potential", Arup Banerjee and M. K. Harbola, Phys. Rev. A 60 , 3599 (1999).		
4.	"Hydrodynamic approach to time-dependent density functional theory: Response properties of metal clusters". Arup Banerjee and M. K. Harbola, J. Chem. Phys. 113 , 5614 (2000).		
5.	."Mean excitation energy, static polarizability, and hyperpolarizability of the spherically confined hydrogen atom". Arup Banerjee , K. D. Sen, J. Garza and R. Vargas, J. Chem. Phys. 116 , 4054 (2002).		
6.	"Calculation of ground- and excited-state energies of confined helium atom", Arup Banerjee , C. Kamal and A. Chowdhury, Phys. Lett A 350 , 121 (2006)		
7.	"Role of solvent and external growth environments to determine growth morphology of molecular crystals", M. K. Singh and Arup Banerjee , Crys. Growth Des. 13 , 2413 (2013).		
8.	"Silicene beyond mono-layers - different stacking configurations and their properties", C. Kamal, Aparna Chakrabarti, Arup Banerjee , and S. K. Deb, J. Phys. Cond. Mat. 25 , 085508 (2013).		
9.	Structural and chemical properties of subnanometer-sized bimetallic Au19Pt cluster, Krishnakanta Mondal, Arup Banerjee , and T. K. Ghanty J. Phys. Chem. C 428 , 75 (2014).		
10.	Adsorption and Activation of CO2 on Small-Sized Cu–Zr Bimetallic Clusters, Megha, K. Mondal, T. K. Ghanty, and Arup Banerjee, J. Phys. Chem. A, 125, 2558, (2021)		